
MA2011-W2 Dynamical Systems
date

ans =
'01-Nov-2020'

Zero-Order Systems
Here, by zero-order systems, we mean systems for which the output at any given time t only depends on

the current value of the input but not on its history. These systems can be symply modeled by a, possibly
nonlinear, algebraic equation, e.g.

The function might or might not depend explicitly on time t, in which case we denote the systems as time-
invariant:

The simplest case is that of linear systems, i.e. those which can be simply described by a linear equation

The easiest case is when the system is Linear and Time-Invariant (LTI):

i.e. when a and are constant.

First-Order Systems (LTI) systems
Very often, the output of a system will depend also on the history of the input. Many systems of interest can be
described via Ordinary Differential Equations (ODE). Besides its current input , the state of the system

will also depend on its time derivatives , up to the n-th order.

First-oder systems only involve derivatives up the first order, i.e. it will only contain (denoted as , for

short).

A linear, time-invariant first-order system can in general be described as

where

• is the time constant;
• is the forcing input;

1

• is the initial condition.

In MATLAB, this can be easily written as

syms x(t) u(t)
syms tau x0 real
assume (tau > 0) %% NOTE this assumption
myEQ = diff(x) == -x/tau + u %% fist order ODE

myEQ(t) =

myIC = x(0) == x0

myIC =

dsolve(myEQ, myIC)

ans =

Response to a constant input
Very often, a system is subjected to a constant input

syms u0 real

myEQ0 = subs(myEQ, u(t), u0)

myEQ0(t) =

DC_Sol = dsolve(myEQ0, myIC)

DC_Sol =

Let's see what happens when , let's define

2

limit(DC_Sol, t, inf)

ans =

From this, we shall rewrite the first order equation as

syms x_inf real
myEQ0 = subs(myEQ, u(t), x_inf/tau)

myEQ0(t) =

dsolve(myEQ0, myIC)

ans =

and we wish to know how it will respond. In this case, rather than a generic forcing input, we should consider a
constant input and a system initially in its zero state, i.e.

mylegend = {};
for tau_list = [0.1 0.2 1 2 5 10]
 SOL = dsolve (subs(myEQ0, {x_inf, tau}, {5, tau_list}), 'x(0)==0')
 fplot(SOL, [0 10]); grid on; hold on
 mylegend= {mylegend{:}, ['\tau = ' num2str(tau_list) ' sec']};
 xlabel('time [sec]'); ylabel('x(t)')
 title('x_\infty = 5')
end

SOL =

SOL =

SOL =
SOL =

SOL =

SOL =

legend(mylegend);

3

To manually sketch exponential responses given it is useful to evalutate the time derivative of the
explonential at time , i.e.

subs(myEQ0, t, 0)

ans(t) =

as this provides the slope of the tangent line

tau_val = 2;
x_0_val = 3;
x_inf_val = 7;
range = [0 3*tau_val];
MyExp = subs(dsolve(myEQ0, 'x(0)==x0'), {x0, x_inf, tau}, {3, 7, tau_val})

MyExp =

MyTaylor = taylor (MyExp, t, 'Order', 2)

4

MyTaylor =

figure
fplot(MyExp, range); grid on, hold on
fplot(MyTaylor, range)
fplot(x_inf_val, 'k', range)
fplot(x_0_val, 'k', range)
ylim([x_0_val-2 x_inf_val+2])
title(['\tau = ' num2str(tau_val)])
legend(char(MyExp), char(MyTaylor), 'x_\infty', 'Location', 'NorthWest')

AC analysis of 1st order systems via the 'complex trick'
syms U_0 X_0 complex
syms omega real
j=sqrt(-1);
myEQ_AC = subs(myEQ, {u(t), x(t)}, {U_0 * exp(j*omega *t), X_0 * exp(j*omega *t)})

myEQ_AC(t) =

eqn_cmplx = simplify(myEQ_AC)

eqn_cmplx(t) =

% simplify (real(AC_Sol_complex) - AC_Sol)

5 VR R I RC AW eJ Wttw

CR Aw est eswe

Sol_myEQ_AC = solve(eqn_cmplx, X_0)

Sol_myEQ_AC =

Bode Plots

freq = logspace(-2, 2, 100);
H = subs(Sol_myEQ_AC,{U_0, tau, omega}, {1 1, 2*pi*freq});
figure
subplot(2,1,1)
loglog(freq, abs(H)); grid on; ylabel('amplitude'); title ('Bode Plots')
hold on
subplot(2,1,2)
semilogx(freq, angle(H)); grid on; xlabel('frequency [Hz]'); ylabel('phase [rad]')
hold on

Cut-off frequency: the frequency at which the output is reduced by -3dB (or), clearly for a first order
system

omega_0 = subs(1/tau, tau, 1)

omega_0 =

f_0 = omega_0/2/pi

f_0 =

H_0 = subs(Sol_myEQ_AC,{U_0, tau, omega}, {1 1, 1});
subplot(2,1,1)
loglog(omega_0/2/pi, abs(H_0) , 'ro')
subplot(2,1,2)
semilogx(omega_0/2/pi, angle(H_0) , 'ro')

6

KUL V in VR t V out

É Rc Aw e It A É ett

H JW Itf

Plot I H JW I and 4HI Jw

Fbi T 4 dtib tan f
4 af tan I

Aliw j.tw
4UtljW tan I WRC

2nd order dynamics

Newton's law
Consider a mass-springer-damper case:

syms m b k real
syms f(t) x(t)
eqn_Newton = f(t) == m*diff(x(t), 2)+b*diff(x(t)) + k*x(t)

eqn_Newton =

7

axis
RC I

a
1002High

i

knowhowto
read

fan
W
p

linear
T t semilogarithm
logarithmic

Time Response to constant forcing Input
figure;
mylegend = {};
for b_var = [0.1, 0.5, 1, 5, 10]
 mylegend = {mylegend{:}, ['b = ' num2str(b_var) 'N.s/m']};
 eqn_Newton_DC = subs(eqn_Newton, {f(t), m, b, k}, {1, 1, b_var, 1});
 Dx = diff(x);
 cond = [x(0)==0, Dx(0) == 0];
 Sol_Newton_time = dsolve(eqn_Newton_DC, cond);
 fplot(Sol_Newton_time, [0 20]); grid on; hold on
end
xlabel('time [sec]'); ylabel('x(t)'); title ('constant forcing input f(t)=1')
legend(mylegend)

AC Analysis
syms omega real
syms F_0 X_0 complex
AC_Exp_Newton = subs(eqn_Newton, {f(t), x(t)}, {F_0*exp(j*omega*t), X_0*exp(j*omega*t)})

AC_Exp_Newton =

simplify(AC_Exp_Newton)

8

ans =

Sol_ODE2= solve(simplify (AC_Exp_Newton) , X_0)

Sol_ODE2 =

freq = logspace(-2, 1, 100);
H = subs(Sol_ODE2,{F_0, m, b, k, omega}, {1, 1, .1, 1, 2*pi*freq});
figure
subplot(2,1,1)
loglog(freq, abs(H)); grid on; ylabel('amplitude'); title ('Bode Plots')
subplot(2,1,2)
semilogx(freq, angle(H)); grid on; xlabel('frequency [Hz]'); ylabel('phase [rad]')

9

