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Notes on 2nd order systems

Consider a 2nd order system such as a linear mass-spring-damper, with mass , linear

fric�on coefficient  and linear s�ffness constant , for which the following dynamics

(Newton’s law) hold: 

This corresponds to a 2nd order Ordinary Differen�al Equa�on (ODE)

NOTE: the order of an ODE is given the order of the highest �me deriva�ve. For
Newton’s law ( ) we always have the accelera�on  which implies 2nd

order dynamics.

Given a 2nd order ODE, the evolu�on of the system  is uniquely determined if we are

given ‘two pieces of informa�on’ , typically posi�on  and velocity  at a given �me 
. This means that, at any �me , the ‘state’  of a system is fully captured by a pair 

where we conveniently introduce a new ‘velocity’ variable .

State Space representa�on

No�ng that , Newton’s law can be rewri�en two equa�ons in two variables  and

 but involving only first deriva�ves (instead of the second deriva�ves of the original
formula�on): 

rearranging by keeping deriva�ves on the le� hand side

Or, equivalently, in matrix format 
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i.e.

AC Analysis

In AC Analysis, we drive systems with purely sinusoidal inputs, at a generic (radian)

frequency  and we simply look for solu�ons which are also purely sinusoidal, at the same

frequency . 

NOTE: the radian frequency , measured in [rad/sec], is related to the natural
frequency , measured in [Hz], simply by  factor, i.e.

Generalized Sinusoids via Complex Exponen�als

Computa�onally, it is more efficient to consider ‘generalized’ sinusoids via complex
exponen�als 

where .

NOTE: Given a generalized signal , where  is a complex number

(or phasor of the generalized signal) characterized by amplitude  and phase  ,

one can always retrieve a pure sinusoid by evalua�ng the real part 
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So, let’s consider a 2nd order mechanical system driven by generalized sinusoidal force 

 and look for generalized sinusoidal mo�ons 

Note that taking deriva�ves of generalized sinusoids (i.e. complex exponen�als) is

par�cularly computa�onally straigh�orward, i.e. 

so formally  can be replace by a  whenever dealing with generalized sinusoids. 

Therefore, Newton’s law for generalized sinusoids simply becomes 

which, recalling that , becomes 

Recalling that  and , one gets

Frequency Response

Frequency response  is a useful concept for linear systems and is usually defined as

‘output’ over ‘input’ ra�o, which for a spring-mass-damper systems becomes: 

A specific mechanical system is defined when values for  are specified. So that 
 is just a complex func�on of the independent variable .

The same system can be rewri�en as 
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where we conveniently define

, also known as resonance frequency, merasured in [rad/sec]

, also know as quality factor, unitless

to students:

1. verify that with this defini�on of  and ,  can be rewri�en as above
boxed equa�on

2. verify that  is unitless

When  the real part of the denominator of  becomes zero and one has

Note: although not the analy�cal one,  is a good approxima�on for the point of

maximum of :

maximizing  is equivalent to minimizing its inverse

which, , can be approximated by ,
this approxima�on has a minimum at 

ω  :=0  k/m
Q =  mk/b2

ω  0 Q H(jω)

Q

ω = ω  0 H(jω)

H(jω  ) =0 −jk Q−1

ω  0

∣H∣

∣H∣2

1/∣H∣ =2 (1 − ω /ω ) +2
0
2 2 Q ω /ω  

−2 2
0
2

ω ≃ ω  0 (1 − ω /ω  ) +2
0
2 2 Q−2

ω = ω  0


