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1 ABSTRACT

In this experiment, we aim to determine how aluminium beams of two different cross-
sections (C-Shape Beam and Rectangular Beam) will react when they are subjected
to a three-point and four-point bending test using a hydraulic press machine
respectively. The test will be performed until the aluminium beam reaches the plastic
region before we start to unload the force applied. We will then reinforce the C-Shape
aluminium beam to overcome the buckling effects by adding more material to further

strengthen it.

2 INTRODUCTION

When a load is applied on a beam, it will transfer the load by converting them into
internal shear forces and moments. The moments can result in notable tensile and
compressive stresses within the beam. Shear stresses may also be important for

beams with small span-to-depth ratios.

If only internal moments are acting within a beam element, it is known to be under pure
bending. As shown in Figure 1, the central span of a beam under four-point loading is
subjected to pure bending. In comparison, a beam subjected to three-point bending
will experience both shear forces and moments throughout the span except for the
supports as shown in Figure 2. Moreover, the gradient of the shear force at the

midpoint experiences a lack of coherence.

Central span under
pure bending
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Figure 1. Four-point bending of a beam  Figure 2. Three-point bending of a beam

How the beam reacts also depends on its elemental properties. A material’s yield
stress g, is the stress where it transits from elastic to plastic behaviour. The stress-
strain relation is linear elastic initially and perfectly plastic after the yield stress is
reached as reflected in Figure 3. When a beam experiences a sufficiently large load,

the maximum of the normal stress o, occurs and the outermost fibres of a cross-



section, reach the yield stress first, and the corresponding moment is known as the

moment to first yield My.
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Figure 3. Constitutive elastic-plastic response of a material

In Figure 4, it displays the fundamental concepts for the case of a rectangular beam.
The interior region of the cross-section remains elastic, but this elastic core will
continue to get smaller if the bending moment increases beyond My . Once the
maximum is reached, the entire cross-section may yield and the elastic core may
disappear. The corresponding moment is the plastic moment M,. Designs of beams
that consider M, may be more cost-effective and efficient than those only factoring in

My .
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Figure 4. Distributions of normal stress g, in a rectangular cross section



3 OBJECTIVES

(a) To determine experimentally My, and Mp, and hence the shape factor k = My /My,
for beams with rectangular and C-Shape cross-sections subjected to (i) four-point
bending, and (ii) three-point bending.

(b) To determine the residual radii of curvature p, of the rectangular beams, after the
maximum load placed on each beam has been completely removed.

(c) To design and construct reinforcement of the C-Shape beam with the aim of
suppressing buckling.

(d) To compute the theoretical values of My, M, and k for both the rectangular and C-
section beams, and p,. and the residual stress distributions for only the rectangular

beams. Calculations are to be carried out for the un-reinforced beams.

4 THEORY

Deformations of a prismatic member possessing a plane of symmetry and subjected
at its ends will have equal and opposite couples acting in the plane of symmetry. The
member will bend due to the couples involved but will stay symmetric with respect to
the plane, which is classified as pure bending. Pure bending will result in the beam
experiencing compressive stress on the beam’s upper region while tension stress on
the beam’s lower region. The neutral axis that passes through the centroid of the cross-

section is the axis that experiences neither compressive nor tension stress.

4.1 THEORETICAL CALCULATIONS OF My, M, and k FOR RECTANGULAR
CROSS-SECTION BEAM
Ih

b
In the elastic regime,
My 1
o= — T,Where second moment of area I = Ebh3

When the outermost fibres reach yield stress g, y = —%, resulting in,

1 3
MY ngh O-y



When the beam becomes fully plastic, the neutral axis equally divides the areas above
and below the axis, and for this rectangular cross-section, it still remains as the

centroidal axis. Therefore,

1 2
MP = th O-y
The shape function k is thus
M, 3
k=—==1

4.2 THEORETICAL CALCULATIONS OF My, Mp, and k FOR C-SHAPE CROSS-
SECTION BEAM
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For a C-Shape cross-section beam, we will need to first calculate the centroidal axis
C.A., which is a distance y above the reference axis. This is done by taking area

moments about the reference axis.

ty L, _
A, (Lz + 5) +24, (7) = (A, + 24,7

Next, the second moment of area I will be obtained by using the parallel axis theorem.
I=1, +2I,
_ 1 3 2 _ 1 3 2
L =2 Lty + (L1ty)dy L =tl” + (Loty)d,
where d; and d, are the respective distances of the centroids of A; and A4, from the

centroidal axis.

In this elastic regime, and under pure bending with the absence of axial loads, the C.A.
always coincides with the neutral axis (N.A.). Therefore when the outermost (bottom)

fibres first reach yield stress a,,, y = =¥ .
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When the C-Shape cross-section beam becomes fully plastic, the “new” N.A., denoted
by x — x, divides the cross-section into two equal areas above and below x — x.

Therefore

Mp = (UyAl) (LZ —s+ (%1)> +2 (GJ’(tZ (Ly — S))) (LZZ_ S) + 2(0y (£25) (%)

The shape factor k can be determined as M, and M, have been known.

4.3 THEORETICAL CALCULATIONS OF RESIDUAL STRESS DISTRIBUTION FOR
RECTANGULAR CROSS-SECTION BEAM
A member made of an elastoplastic material will deform obeying Hooke’s law as long
as the normal stress g, does not surpass the yield strength o,,. Member will become
plastic once ¢ > o,,. Hence, the surface of the beam which is furthest away from the
neutral axis will become plastic first due to the larger o experienced. When bending is
sufficiently large, the plastic zones will form in the member made of elastoplastic
material. When the bending has dropped to zero, the resultant stress at a point will not
be zero due to residual stresses. As shown in Figure 5, residual stresses that remain

in the various parts of the beam are derived by applying the principle of superposition.
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Mp>M>M, Unloading Residual Stress
Figure 5. Determination of residual stress using superposition
The “fictitious” maximum stress o, is as follows

MG M) em

Oy = =—

5 EXPERIMENTAL DETAILS

5.1 EQUIPMENT LIST

(1) Shimadzu AGX 100kN Materials Tester
(2) Three points testing fixture

(3) Four points testing fixture



5.2 PROCEDURES

(1) Fix the appropriate load head for 3 or 4-point measurement.

(2) Orientate the workpiece equally onto the supports.

(3) Lower the load head manually using the controller till it is firmly held by the test rig.

(4) Calibrate and zero the displacement measurement sensor before allowing the load
to be applied automatically using the TRAPEZIUM X software.

(5) Record a stress vs strain graph using the TRAPEZIUM X software.

(6) Once ultimate tensile stress is displayed on the graph, stop applying the load on
the workpiece.

(7) Using the controller, manually raise the load head and remove the workpiece.

(8) Repeat the experiment from steps 1 to 7 for the different beams as well as for the

different point loadings.

6 RESULTS

6.1 TECHNICAL DATA

MATERIAL PROPERTIES

Based on the tensile test for Aluminium 6061, we have obtained the following results:
oy = 220MPa and E = 68GPa

b =50.9mm = 0.0509m

h=12.7mm = 0.0127m ¢ b ’

RECTANGULAR CROSS-SECTION BEAM I
h

v

A

C-SHAPE CROSS-SECTION BEAM ty

L, = 78.4mm = 0.0784m x { x

L, = 24.5mm = 0.0245m

ty =t, = 1mm = 0.001m -




6.2 EXPERIMENTAL RESULTS
Graphs obtained from the experiment are shown in Appendix.

From the graphs, the following experimental results were obtained:

Rectangular C-Shape Reinforced C-Shape
Loading 3-Point 4-Point 3-Point 4-Point 3-Point 4-Point
P, (kN) 2.082 1.497 0.501 0.414 0.806 0.607
Py (kN) 3.023 2.267 0.795 0.665 1.245 0.920

Under loading, the force acting on the beam can be used to determine the shear force
and bending moment diagram. The values of My and M, can hence be determined

experimentally.

4-Point Loading 3-Point Loading
P P P
a a l
[ ¥ i | [ |
AN JAY JAY JAY

i Shear Force Diagram

M=PL/4 +--mmmm-
-- M=Pa

i Bending Moment Diagram

where a = 0.202m and L = 0.7m.

Hence the experimental results are as follows:

Rectangular C-Shape Reinforced C-Shape
Loading 3-Point 4-Point 3-Point 4-Point 3-Point 4-Point
My (KNm) 0.364 0.302 0.088 0.084 0.141 0.106
Mp (KNm) 0.529 0.458 0.139 0.134 0.218 0.161
=%—’; 1.45 1.51 1.59 1.61 1.55 1.52
p (m) 1.394 1.765 - - - -




6.3 THEORETICAL CALCULATIONS

Rectangular Shape Beam

Yield Stress oy, = 220 x 10°Pa

Neutral Axis/ _ 0.0127

Centroidal Axis |7 ="~ g~ 0.00635m
Second Moment [ = 1

of Inertia

= 5 (0.0509)(0.0127)° = 8.689 x 10~°m*

Yielding Moment

1
My = =(0.0509)(0.0127)?(220 x 10°) = 301.021 Nm

Ultimate Moment

1
M, = =(0.0509)(0.0127)%(220 x 10°) = 451.531 Nm

4
. Mp
Shape Function k=—=15
My
Mp > M > My, therefore M = 2220214451931 _ 396976 Nm
3 Y
M = EMY 1 —F ; YY =4.490 x 1073m
1
Section modulus,— = 1.368 x 107 m3
Residual Radius _ Y
My
Of Curvature Og =— = 274.986 MPa
Oresidual = Oy— 04 = —54.986 MPa
O' .
Erosidual = %"’“‘“ = —8.042 x 10~*
y
Presidual = — — = 5.583m
Eresidual
. M, > M > M,, therefore M = 22L214451531 _ 376976 N
Residual Stress P 6(3;6 276) m
Distributions — . = 275.000 MP
9m = 10.0509)(0.0127)2 : ¢

Unreinforced C-Shape Cross-Section Beam

Yield Stress oy, = 220 x 10°Pa

Let a be the distance above the horizontal length of 4,

. 2L1t2 + Lla = (1 - a)L1
Neutral A
eutral Axis a = 0.1875mm

s =24.5+40.1875 = 24.6875 mm = 0.0246875 m

_ (784x107°) (0.0245 + Ogﬁ) +2(25.4 x 1076) (O'OZL“S)
Centroidal Axis | V' = (784 x 10-6) + 2(25.4 x 10-5)

= 0.0200m

Second Moment | (784 x 107) (0.0245 + Ogﬁ) +2(25.4 x 107) (O-Ozﬂ)
of Inertia y=

(78.4 x 10-6) + 2(25.4 X 10-9)




= 0.0200 m
0.001 _
dy = ——+0.0245 — 7 = 0.005m

0.0245
dz ==

— (0.0245 — 7) = 0.00775m

1
I = (0.0784)(0.001)° + (0.0784)(0.001)(0.005)?
=1.967 X 1072 m*
1
I = 75(0.001)(0.0245)° + (0.0245)(0.001)(0.00775)?

= 2.697 x 10~ m*
I=1 42, =7361%10"°m*

_ 20X 109(7361x10°%) _
v = 0.0200 m* = oY m

My = (o,4,) (Lz —s+ (%)) + 2 (ay(tz(Lz - S))) (Lzz— S)

S
+2(0y(69) (5)
= 134.076 + 0.303 + 5.693 = 140.07 Nm

Yielding Moment

Ultimate Moment

. Mp
Shape Function k=—=1.730
My

7 DISCUSSIONS

1) What are the main error sources for your testing data?

One source of error is that the load head is not placed perpendicular to the longitudinal
axis of the beam. This will result in the beam experiencing shear force and not having
“true” pure bending. A possible solution is to have guides so as to ensure that the beam
is always accurately positioned as it bends. Another source of error could be friction at
the contact points between the beam and the load head. This will cause some of the
load applied to not be channelled directly to the beam but is used to overcome the
friction of the contacting surface. To reduce the friction, we can consider mildly
lubricating the surface to ensure that not too much of the force applied is lost due to
friction but we cannot fully eliminate the friction otherwise the beam will slip and not be

able to experience the bending effect.
2) What does the shape factor mean? For beams with the same cross-section shape,

will the shape factor you obtained from 3-point bending differ from the one in 4-
point bending?

10



The shape factor is an indicator of how much more loading can the beam sustain after
it has yielded but before a plastic hinge is formed. The shape factor for beams with the
same cross-section shape should not differ because the shape factor uniquely
characterizes the shape regardless of it being a 3-point or 4-point bending. However,
in the data obtained from our experiment, the 3-point and 4-point bending yielded

differing shape factor values. This could be due to the possible errors mentioned above.

3) What is the logical thinking behind your design of reinforcement of the C-shape
beams?
Photos of the reinforcement of the C-shape beams to suppress buckling has been
appended in the Appendix. We decided to add material to strengthen where the load
was acting on and kept the rivets fixed as low as possible to reduce the shear forces
they will face. We also added an additional layer of material on each side of the walls
of the C-shape beam to reduce the chances of it buckling. From our results, we
managed to strengthen the beam by 56.6% for the 3-point loading. While for the 4-
point bending, the strength improved by 38.3% but the reinforcement failed due to one
of the rivets giving way. It was observed that a good design of reinforced beams should
not have too many rivets at the sides of the metal near to the loading point as this will
greatly weaken the strength of the metal on the sides and also add on more mass.
Furthermore, we also took note not to add to much material when reinforcing to ensure
that the mass of the beams was kept as low as possible. The masses of our 3-point

and 4-point reinforced C-shape beams are 385g and 4159 respectively.

4) What is the definition of “pure bending”?
If a beam is loaded in a manner such that the shear forces are zero on any cross-
section perpendicular to the longitudinal axis of the beam, and therefore it is subjected

to only constant bending moment, then the beam is experiencing pure bending.

8 CONCLUSION

In an overview, the primary objectives of the experiment have been achieved. However,
there are limitations towards the accuracy of the measurements in the experiments,
resulting in the various errors shown in the results. A better setup and choice of
equipment for these experiments could be implemented to minimize potential errors

and attain much higher accuracy results.
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10 APPENDIX
10.1 RECTANGULAR CROSS-SECTION BEAM
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Figure 6. 3-Point Bending Test on Rectangular Cross-Section Beam
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Figure 7. 4-Point Bending Test on Rectangular Cross-Section Beam
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10.2 UNREINFORCED C-SHAPE CROSS-SECTION BEAM
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Figure 8. 3-Point Bending Test on Unreinforced C-Shape Cross-Section Beam
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Figure 9. 4-Point Bending Test on Unreinforced C-Shape Cross-Section Beam
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10.3 REINFORCED C-SHAPE CROSS-SECTION BEAM
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Figure 10. 3-Point Bending Test on Reinforced C-Shape Cross-Section Beam
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Figure 11. 4-Point Bending Test on Reinforced C-Shape Cross-Section Beam
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10.4 PHOTOS OF UNREINFORCED AND REINFORCED C-SHAPE CROSS-
SECTION BEAMS

Figure 12. 3-Point Bending Test on Rectangular and
Unreinforced C-Shape Cross-Section Beam

4 Shimadzil 1VV™*
v I Testiog Machine

Figuré 1. 4-Point Bending Test on Rectangular and
Unreinforced C-Shape Cross-Section Beam

Figure 15. Design for Reinforced C-Shape Cross-Section Beam (4-Point Bending Test)
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