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1 ABSTRACT 
In this experiment, we aim to determine how aluminium beams of two different cross-

sections (C-Shape Beam and Rectangular Beam) will react when they are subjected 

to a three-point and four-point bending test using a hydraulic press machine 

respectively. The test will be performed until the aluminium beam reaches the plastic 

region before we start to unload the force applied. We will then reinforce the C-Shape 

aluminium beam to overcome the buckling effects by adding more material to further 

strengthen it. 

 
2 INTRODUCTION 
When a load is applied on a beam,  it will transfer the load by converting them into 

internal shear forces and moments. The moments can result in notable tensile and 

compressive stresses within the beam. Shear stresses may also be important for 

beams with small span-to-depth ratios. 

 

If only internal moments are acting within a beam element, it is known to be under pure 

bending. As shown in Figure 1, the central span of a beam under four-point loading is 

subjected to pure bending. In comparison, a beam subjected to three-point bending 

will experience both shear forces and moments throughout the span except for the 

supports as shown in Figure 2. Moreover, the gradient of the shear force at the 

midpoint experiences a lack of coherence. 

 

 

 
 
 
 
 
 
 
How the beam reacts also depends on its elemental properties. A material’s yield 

stress 𝜎! is the stress where it transits from elastic to plastic behaviour. The stress-

strain relation is linear elastic initially and perfectly plastic after the yield stress is 

reached as reflected in Figure 3. When a beam experiences a sufficiently large load, 

the maximum of the normal stress 𝜎"  occurs and the outermost fibres of a cross-

  

Central span under 
pure bending 

Figure 1. Four-point bending of a beam Figure 2. Three-point bending of a beam 



 3 

section, reach the yield stress first, and the corresponding moment is known as the 

moment to first yield 𝑀#.  

 

 

 

 

 

 

 

 

In Figure 4, it displays the fundamental concepts for the case of a rectangular beam. 

The interior region of the cross-section remains elastic, but this elastic core will 

continue to get smaller if the bending moment increases beyond 𝑀# . Once the 

maximum is reached, the entire cross-section may yield and the elastic core may 

disappear. The corresponding moment is the plastic moment 𝑀$. Designs of beams 

that consider 𝑀$ may be more cost-effective and efficient than those only factoring in 

𝑀#.   

Plastic 

Stress 

Strain 

𝜎! 

Figure 3. Constitutive elastic-plastic response of a material 
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Figure 4. Distributions of normal stress 𝜎" in a rectangular cross section 
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3 OBJECTIVES 
(a) To determine experimentally 𝑀# and 𝑀$, and hence the shape factor 𝑘 = 	𝑀$/𝑀#, 

for beams with rectangular and C-Shape cross-sections subjected to (i) four-point 

bending, and (ii) three-point bending. 

(b) To determine the residual radii of curvature 𝜌' of the rectangular beams, after the 

maximum load placed on each beam has been completely removed. 

(c) To design and construct reinforcement of the C-Shape beam with the aim of 

suppressing buckling. 

(d) To compute the theoretical values of 𝑀#, 𝑀$  and 𝑘 for both the rectangular and C-

section beams, and 𝜌'  and the residual stress distributions for only the rectangular 

beams. Calculations are to be carried out for the un-reinforced beams. 

 
4 THEORY 
Deformations of a prismatic member possessing a plane of symmetry and subjected 

at its ends will have equal and opposite couples acting in the plane of symmetry. The 

member will bend due to the couples involved but will stay symmetric with respect to 

the plane, which is classified as pure bending. Pure bending will result in the beam 

experiencing compressive stress on the beam’s upper region while tension stress on 

the beam’s lower region. The neutral axis that passes through the centroid of the cross-

section is the axis that experiences neither compressive nor tension stress. 

 

4.1 THEORETICAL CALCULATIONS OF 𝑴𝒀 , 𝑴𝑷   and 𝒌  FOR RECTANGULAR 
CROSS-SECTION BEAM 

 

 

 

In the elastic regime,  

𝜎 = 	−	
𝑀𝑦
𝐼 , 𝑤ℎ𝑒𝑟𝑒	𝑠𝑒𝑐𝑜𝑛𝑑	𝑚𝑜𝑚𝑒𝑛𝑡	𝑜𝑓	𝑎𝑟𝑒𝑎		𝐼 =

1
12 𝑏ℎ

* 

When the outermost fibres reach yield stress 𝜎! , 𝑦 = − +
,
, resulting in,  

𝑀# =
1
6𝑏ℎ

*𝜎! 

ℎ 

𝑏 
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When the beam becomes fully plastic, the neutral axis equally divides the areas above 

and below the axis, and for this rectangular cross-section, it still remains as the 

centroidal axis. Therefore,  

𝑀$ =
1
4𝑏ℎ

,𝜎! 

The shape function 𝑘 is thus 

𝑘 =
𝑀$

𝑀#
=
3
2 

 

4.2 THEORETICAL CALCULATIONS OF 𝑴𝒀, 𝑴𝑷  and 𝒌 FOR C-SHAPE CROSS-
SECTION BEAM 

 

 

 

 

 

 

 

For a C-Shape cross-section beam, we will need to first calculate the centroidal axis 

C.A., which is a distance 𝑦C above the reference axis. This is done by taking area 

moments about the reference axis. 

𝐴- E𝐿, +
𝑡-
2H + 2𝐴, E

𝐿,
2 H = (𝐴- + 2𝐴,)𝑦C 

Next, the second moment of area 𝐼 will be obtained by using the parallel axis theorem. 

𝐼 = 𝐼- + 2𝐼, 

𝐼- =
-
-,
𝐿-𝑡-* + (𝐿-𝑡-)𝑑-

,  𝐼, =
-
-,
𝑡,𝐿,* + (𝐿,𝑡,)𝑑,

, 

where 𝑑- and 𝑑, are the respective distances of the centroids of 𝐴- and 𝐴, from the 

centroidal axis. 

 

In this elastic regime, and under pure bending with the absence of axial loads, the C.A. 

always coincides with the neutral axis (N.A.). Therefore when the outermost (bottom) 

fibres first reach yield stress 𝜎!, y = −𝑦C	. 

𝑀# =		
𝜎!𝐼
𝑦C

 

𝑡- 

𝑡, 

𝐿- 

𝑥 𝑥 
𝐶. 𝐴. 

𝑦C 𝑠 

𝐴- 

𝐴, 
𝐿, 
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When the C-Shape cross-section beam becomes fully plastic, the “new” N.A., denoted 

by 𝑥 − 𝑥 , divides the cross-section into two equal areas above and below 𝑥 − 𝑥 . 

Therefore 

𝑀$ = O𝜎!𝐴-PQ𝐿, − 𝑠 + E
𝑡-
2HR + 2 S𝜎!O𝑡,

(𝐿, − 𝑠)PT E
𝐿, − 𝑠
2 H + 2(𝜎!(𝑡,𝑠) S

𝑠
2T 

The shape factor k can be determined as 𝑀$ and 𝑀# have been known. 

 
4.3 THEORETICAL CALCULATIONS OF RESIDUAL STRESS DISTRIBUTION FOR 

RECTANGULAR CROSS-SECTION BEAM 
A member made of an elastoplastic material will deform obeying Hooke’s law as long 

as the normal stress 𝜎" does not surpass the yield strength 𝜎!. Member will become 

plastic once σ > 𝜎!. Hence, the surface of the beam which is furthest away from the 

neutral axis will become plastic first due to the larger σ experienced. When bending is 

sufficiently large, the plastic zones will form in the member made of elastoplastic 

material. When the bending has dropped to zero, the resultant stress at a point will not 

be zero due to residual stresses. As shown in Figure 5, residual stresses that remain 

in the various parts of the beam are derived by applying the principle of superposition. 

 

 
 
 
 
 
 
 
 
 
The “fictitious” maximum stress 𝜎% is as follows 

𝜎% =
𝑀(ℎ2)
𝐼 =

𝑀(ℎ2)
1
12 𝑏ℎ

*
=
6𝑀
𝑏ℎ, 

5 EXPERIMENTAL DETAILS 
5.1 EQUIPMENT LIST 
(1) Shimadzu AGX 100kN Materials Tester 

(2) Three points testing fixture 

(3) Four points testing fixture 

𝑀$ > M > 𝑀# Unloading Residual Stress 

Figure 5. Determination of residual stress using superposition 
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5.2 PROCEDURES 
(1) Fix the appropriate load head for 3 or 4-point measurement. 

(2) Orientate the workpiece equally onto the supports. 

(3) Lower the load head manually using the controller till it is firmly held by the test rig. 

(4) Calibrate and zero the displacement measurement sensor before allowing the load 

to be applied automatically using the TRAPEZIUM X software. 

(5) Record a stress vs strain graph using the TRAPEZIUM X software. 

(6) Once ultimate tensile stress is displayed on the graph, stop applying the load on 

the workpiece. 

(7) Using the controller, manually raise the load head and remove the workpiece. 

(8) Repeat the experiment from steps 1 to 7 for the different beams as well as for the 

different point loadings. 

 
6 RESULTS 
6.1 TECHNICAL DATA 
MATERIAL PROPERTIES 

Based on the tensile test for Aluminium 6061, we have obtained the following results: 

σ. = 220MPa and E = 68GPa 

 
RECTANGULAR CROSS-SECTION BEAM 

𝑏 = 50.9𝑚𝑚 = 0.0509𝑚 

ℎ = 12.7𝑚𝑚 = 0.0127𝑚 

 
 

C-SHAPE CROSS-SECTION BEAM 

𝐿- = 78.4𝑚𝑚 = 0.0784𝑚 

𝐿, = 24.5𝑚𝑚 = 0.0245𝑚 

𝑡- = 𝑡, = 1𝑚𝑚 = 0.001𝑚 

 

 

  

ℎ 

𝑏 

𝑡- 

𝑡, 

𝐿- 

𝑥 𝑥 
𝐶. 𝐴. 

𝑦C 𝑠 

𝐴- 

𝐴, 
𝐿, 
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6.2 EXPERIMENTAL RESULTS 
Graphs obtained from the experiment are shown in Appendix. 

From the graphs, the following experimental results were obtained: 

 Rectangular C-Shape Reinforced C-Shape 
Loading 3-Point 4-Point 3-Point 4-Point 3-Point 4-Point 
𝑃# (kN) 2.082 1.497 0.501 0.414 0.806 0.607 
𝑃$ (kN) 3.023 2.267 0.795 0.665 1.245 0.920 

Under loading, the force acting on the beam can be used to determine the shear force 

and bending moment diagram. The values of 𝑀# and 𝑀$ can hence be determined 

experimentally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 𝑎 = 0.202𝑚 and 𝐿 = 0.7𝑚.  

 
Hence the experimental results are as follows: 

 Rectangular C-Shape Reinforced C-Shape 
Loading  3-Point 4-Point 3-Point 4-Point 3-Point 4-Point 
𝑀# (kNm) 0.364 0.302 0.088 0.084 0.141 0.106 
𝑀$ (kNm) 0.529 0.458 0.139 0.134 0.218 0.161 

𝑘 =
𝑀$

𝑀#
 1.45 1.51 1.59 1.61 1.55 1.52 

𝜌 (m) 1.394 1.765 - - - - 
 

P P 
4-Point Loading 3-Point Loading 

M=Pa 

a a 

P 

P 

L 

P/2 

M= PL/4 

Shear Force Diagram 

Bending Moment Diagram 
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6.3 THEORETICAL CALCULATIONS 
Rectangular Shape Beam 

Yield Stress 𝜎! = 220 × 10/𝑃𝑎 
Neutral Axis/ 
Centroidal Axis 𝑦C = 𝑛 =

0.0127
2 = 0.00635𝑚 

Second Moment 
of Inertia 𝐼 =

1
12
(0.0509)(0.0127)* = 8.689 × 1001𝑚2 

Yielding Moment  𝑀# =
1
6
(0.0509)(0.0127),(220 × 10/) = 301.021	𝑁𝑚 

Ultimate Moment 𝑀$ =
1
4
(0.0509)(0.0127),(220 × 10/) = 451.531	𝑁𝑚 

Shape Function 𝑘 =
𝑀$

𝑀#
= 1.5 

Residual Radius 
Of Curvature 

𝑀$ > 𝑀 > 𝑀#, therefore M = *3-.3,-526-.6*-	
,

= 376.276	𝑁𝑚 

𝑀 =
3
2𝑀# Q1 −

	𝑌#,

3𝑦C,
R ; 	𝑌# = 4.490 × 100*𝑚 

𝑆𝑒𝑐𝑡𝑖𝑜𝑛	𝑚𝑜𝑑𝑢𝑙𝑢𝑠,
𝐼
𝑦C
= 1.368 × 100/	𝑚* 

𝜎& =
𝑀𝑦C
𝐼 = 274.986	𝑀𝑃𝑎 

	𝜎'89:;<&= = 	𝜎!−	𝜎& = −54.986	𝑀𝑃𝑎 

	𝜀'89:;<&= =
	𝜎'89:;<&=

𝐸 = −8.042 × 1002 

	𝜌'89:;<&= = −
𝑦

	𝜀'89:;<&=
= 5.583𝑚 

Residual Stress 
Distributions 

𝑀$ > 𝑀 > 𝑀#, therefore M = *3-.3,-526-.6*-	
,

= 376.276	𝑁𝑚 

𝜎% =
6(376.276)

(0.0509)(0.0127), = 275.000	𝑀𝑃𝑎 

 
Unreinforced C-Shape Cross-Section Beam 

Yield Stress 𝜎! = 220 × 10/𝑃𝑎 

Neutral Axis 

Let a be the distance above the horizontal length of 𝐴- 
2𝐿-𝑡, + 𝐿-𝑎 = (1 − 𝑎)𝐿- 
𝑎 = 0.1875	𝑚𝑚 
𝑠 = 24.5 + 0.1875 = 24.6875	𝑚𝑚 = 0.0246875	𝑚	 

Centroidal Axis 𝑦C =
(78.4 × 100/) S0.0245 + 0.0012 T + 2(25.4 × 100/) S0.02452 T

(78.4 × 100/) + 2(25.4 × 100/)  

				= 0.0200	𝑚 

Second Moment 
of Inertia 𝑦C =

(78.4 × 100/) S0.0245 + 0.0012 T + 2(25.4 × 100/) S0.02452 T
(78.4 × 100/) + 2(25.4 × 100/)  
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= 0.0200	𝑚 

𝑑- =
0.001
2 + 0.0245 − 𝑦C = 0.005𝑚 

𝑑, =
0.0245
2 − (0.0245 − 𝑦C) = 0.00775𝑚 

𝐼- =
1
12
(0.0784)(0.001)* + (0.0784)(0.001)(0.005), 

					= 1.967 × 1001	𝑚2 

𝐼, =
1
12
(0.001)(0.0245)* + (0.0245)(0.001)(0.00775), 

					= 2.697 × 1001	𝑚2 
𝐼 = 𝐼- + 2𝐼, = 7.361 × 1001	𝑚2 

Yielding Moment  𝑀# =
(220 × 10/)(7.361 × 1001)

0.0200	𝑚2 = 	80.967	𝑁𝑚 

Ultimate Moment 

𝑀$ = O𝜎!𝐴-P Q𝐿, − 𝑠 + E
𝑡-
2HR + 2S𝜎!O𝑡,

(𝐿, − 𝑠)PT E
𝐿, − 𝑠
2 H

+ 2(𝜎!(𝑡,𝑠) S
𝑠
2T 

							= 134.076 + 0.303 + 5.693 = 140.07	𝑁𝑚 

Shape Function 𝑘 =
𝑀$

𝑀#
= 1.730 

 

7 DISCUSSIONS 
1) What are the main error sources for your testing data? 

One source of error is that the load head is not placed perpendicular to the longitudinal 

axis of the beam. This will result in the beam experiencing shear force and not having 

“true” pure bending. A possible solution is to have guides so as to ensure that the beam 

is always accurately positioned as it bends. Another source of error could be friction at 

the contact points between the beam and the load head. This will cause some of the 

load applied to not be channelled directly to the beam but is used to overcome the 

friction of the contacting surface. To reduce the friction, we can consider mildly 

lubricating the surface to ensure that not too much of the force applied is lost due to 

friction but we cannot fully eliminate the friction otherwise the beam will slip and not be 

able to experience the bending effect. 

 

2) What does the shape factor mean? For beams with the same cross-section shape, 

will the shape factor you obtained from 3-point bending differ from the one in 4-

point bending? 
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The shape factor is an indicator of how much more loading can the beam sustain after 

it has yielded but before a plastic hinge is formed. The shape factor for beams with the 

same cross-section shape should not differ because the shape factor uniquely 

characterizes the shape regardless of it being a 3-point or 4-point bending. However, 

in the data obtained from our experiment, the 3-point and 4-point bending yielded 

differing shape factor values. This could be due to the possible errors mentioned above. 

 

3) What is the logical thinking behind your design of reinforcement of the C-shape 

beams? 

Photos of the reinforcement of the C-shape beams to suppress buckling has been 

appended in the Appendix. We decided to add material to strengthen where the load 

was acting on and kept the rivets fixed as low as possible to reduce the shear forces 

they will face. We also added an additional layer of material on each side of the walls 

of the C-shape beam to reduce the chances of it buckling. From our results, we 

managed to strengthen the beam by 56.6% for the 3-point loading. While for the 4-

point bending, the strength improved by 38.3% but the reinforcement failed due to one 

of the rivets giving way. It was observed that a good design of reinforced beams should 

not have too many rivets at the sides of the metal near to the loading point as this will 

greatly weaken the strength of the metal on the sides and also add on more mass. 

Furthermore, we also took note not to add to much material when reinforcing to ensure 

that the mass of the beams was kept as low as possible. The masses of our 3-point 

and 4-point reinforced C-shape beams are 385g and 415g respectively. 

 

4) What is the definition of “pure bending”? 

If a beam is loaded in a manner such that the shear forces are zero on any cross-

section perpendicular to the longitudinal axis of the beam, and therefore it is subjected 

to only constant bending moment, then the beam is experiencing pure bending. 
 

8 CONCLUSION 
In an overview, the primary objectives of the experiment have been achieved. However, 

there are limitations towards the accuracy of the measurements in the experiments, 

resulting in the various errors shown in the results. A better setup and choice of 

equipment for these experiments could be implemented to minimize potential errors 

and attain much higher accuracy results.  
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10 APPENDIX 
10.1 RECTANGULAR CROSS-SECTION BEAM 
   

Figure 6. 3-Point Bending Test on Rectangular Cross-Section Beam 
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Figure 7. 4-Point Bending Test on Rectangular Cross-Section Beam 
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10.2 UNREINFORCED C-SHAPE CROSS-SECTION BEAM 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 8. 3-Point Bending Test on Unreinforced C-Shape Cross-Section Beam 

Figure 9. 4-Point Bending Test on Unreinforced C-Shape Cross-Section Beam 
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10.3 REINFORCED C-SHAPE CROSS-SECTION BEAM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 10. 3-Point Bending Test on Reinforced C-Shape Cross-Section Beam 

Figure 11. 4-Point Bending Test on Reinforced C-Shape Cross-Section Beam 

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

Fo
rc

e 
(N

)

Disp. (mm)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

0 5 10 15 20 25

Fo
rc

e 
(N

)

Disp. (mm)



 15 

10.4 PHOTOS OF UNREINFORCED AND REINFORCED C-SHAPE CROSS-  
     SECTION BEAMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12. 3-Point Bending Test on Rectangular and  
Unreinforced C-Shape Cross-Section Beam 

Figure 13. 4-Point Bending Test on Rectangular and  
Unreinforced C-Shape Cross-Section Beam 

Figure 14. Design for Reinforced C-Shape Cross-Section Beam (3-Point Bending Test)  

Figure 15. Design for Reinforced C-Shape Cross-Section Beam (4-Point Bending Test)  


