

School of Mechanical & Aerospace Engineering MA3010 – Thermodynamics & Heat Transfer AY21S1 – Continual Assessment 2

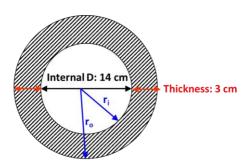
Instructions:

- Please read the questions carefully before answering them.
- There is no need to print this question sheet. Please write your workings and answers neatly on blank or foolscap paper.
- All workings and answers are to be scanned and uploaded before <u>11:14:59 am</u>.
- 1. Hot desert air at 1 atm, 38°C, and 20% relative humidity is cooled and humidified with a water spray to 25°C. If the air flow rate is 2.5 kg dry air/s, determine the rate of water spray.

(10 marks)

Obtain ω_1 and ω_2 from psychrometric chart; this is an evaporative process which occurs at constant wet-bulb temperature and intersects with T_2 .

Mass balance for water:

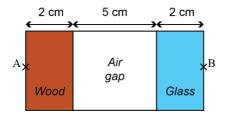

 $\dot{m}_w = \dot{m}_a(\omega_2 - \omega_1)$

Psychrometric chart:

2. A current of 8 A is passed through a 3 cm thick, 1.5 m long circular pipe with an internal diameter of 14 cm. If the electrical resistance of the pipe is 2 Ω , what is the volumetric heat generation rate (\dot{e}_g) for the pipe?

(10 marks)

Pipe volume = $\pi (r_o^2 - r_i^2)L$


Power generated = I^2R

 $\dot{e}_{gen} = Power/volume$

3. A 1 m² by 2 cm thick wooden panel (k = 0.2 W/m⋅K) is used to cover up 1 m² by 2 cm thick glass window (k = 1.0 W/m⋅K), leaving a 5 cm air gap between the panel and the glass. The convection heat transfer coefficient in the air gap is 2 W/m²⋅K. If the temperatures at point A and B are 30°C and 10°C respectively, what is the heat transfer rate through the window?

(15 marks)

 $R_{total} = R_{wood} + R_{air,wood} + R_{air,glass} + R_{glass}$

$$= \frac{L_{wood}}{K_{wood} A} + \frac{1}{h A} + \frac{1}{h A} + \frac{L_{glass}}{K_{glass} A}$$
$$\dot{Q} = \frac{\Delta T}{R_{total}}$$

4. A steel ball (k = $43.0 \text{ W/m} \cdot \text{K}$, $\rho = 8000 \text{ kg/m}^3$, $c_p = 0.49 \text{ kJ/kg} \cdot \text{K}$) of radius 6 cm initially at 27°C is placed into an oven of 800°C . The oven is maintained at the constant temperature of 800°C and the convective heat transfer coefficient in the oven is $120 \text{ W/m}^2 \cdot \text{K}$. Determine the instantaneous heat transfer at t = 200 second.

(10 marks)

$$b = \frac{h}{\rho C L_c}$$
$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-bt}$$

Instantaneous Q = $hA(T_{t=200s} - T_{\infty})$

5. A cube of length 5 mm (k =1.5 W/m·K) is heated and left to cool in air with a heat transfer coefficient of 15 W/m²·K. If 2 surfaces of the cube are insulated, calculate the Biot number.

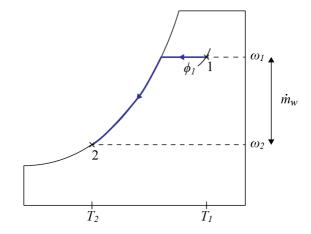
$$L_c = \frac{v}{A}$$

$$Bi = \frac{hL_c}{k}$$

6. Moist air at 1 atm, 35°C, and 70% relative humidity is cooled to 20°C. Assuming that the condensate is also removed at 20°C, calculate the heat removal rate when the flow rate of the moist air is 1.2 kg dry air/s.

(15 marks)

Obtain ω_1 , h_1 , ω_2 and h_2 from psychrometric chart; state 2 is at 100% relative humidity and T_2 .

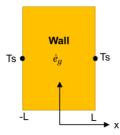

Mass balance (rate of condensate removed):

$$\dot{m}_w = \dot{m}_a(\omega_1 - \omega_2)$$

Energy balance (h_f = saturated liquid water enthalpy at T_2):

$$\dot{m}_a h_1 = \dot{m}_a h_2 + \dot{m}_w h_f + \dot{Q}_{out}$$

 $\dot{Q}_{out} = \dot{m}_a (h_1 - h_2) - \dot{m}_w h_f$


7. Heat is internally generated in a wall (k = 0.750 W/m·K) of thickness 20 cm at a rate of \dot{e}_g = 700 W/m³. The surface temperature on both sides of the wall are maintained at the same temperature (T_s) with equal convective heat losses on both sides. Assuming 1D heat conduction, sketch the temperature profile within the wall, and determine the value of T_s if the maximum internal temperature is 50°C. Hint: the temperature distribution of the wall along its thickness is $T = -\frac{\dot{e}_g}{2k}x^2 + T_S + \frac{\dot{e}_g}{2k}L^2$, where the origin is at the channel centre.

(15 marks)

Thickness = 2L

$$T = -\frac{\dot{e}_g}{2k}x^2 + T_S + \frac{\dot{e}_g}{2k}L^2$$

$$T_{max} = T_S + \frac{\dot{e}_g}{2k}L^2$$
 at $x = 0$

8. A ski jacket made of multiple layers of synthetic fabric has a total thermal resistance of 0.3 K/W. Assuming inner surface temperature of the jacket is 28°C and the surface area is 1.25 m², determine the temperature at the outer jacket when the outdoor temperature is 0°C and the heat transfer coefficient at the outer surface is 25 W/m²·K.

(15 marks)

 $R_{total} = R_{ski jacket} + R_{conv, outside}$

$$\dot{Q} = \frac{\Delta T}{R_{total}}$$

$$\frac{T_0 - T_{\infty,0}}{R_{conv}} = \dot{Q}$$

END OF PAPER