

School of Mechanical & Aerospace Engineering MA3010 – Thermodynamics & Heat Transfer AY2021 – Continual Assessment 2 (Solution guide)

Instructions:

- Please read the questions carefully before answering them.
- There is no need to print this question sheet. Please write your workings and answers neatly on blank or foolscap paper.
- All workings and answers are to be scanned and uploaded before 1115 am.
- 1. An ideal gas mixture contains m_a kg of gas A and m_b kg of gas B. What is the mole fraction y_A of gas A in the mixture? (10 marks)

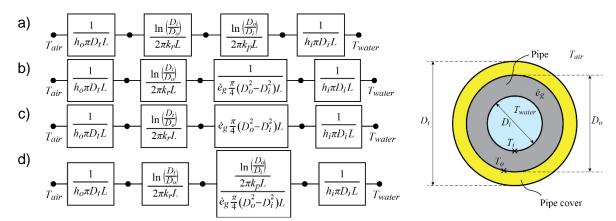
$$N_A = rac{m_A}{M_A}$$
, $N_B = rac{m_B}{M_B}$ $y_A = rac{N_A}{N_A + N_B}$

2. A tank is filled with atmospheric air at T° C, P kPa and ϕ % relative humidity. If the mass of water vapour in the tank is m_v kg, what is the mass of the dry air m_a ? (10 marks)

$$\omega = \frac{0.622\phi P_g}{P - \phi P_g}, P_g = P_{sat @ T}$$

$$m_a = \frac{m_v}{\omega}$$

3. Warm moist air at 1 atm, T_1 °C and ϕ_1 % relative humidity is cooled to T_2 °C at a rate of \dot{m}_a kg dry air per second. What is the rate of condensate removal \dot{m}_v ? (10 marks)


obtain from psychrometric chart: $\omega_1 \ @ \ T_1$ and ϕ_1

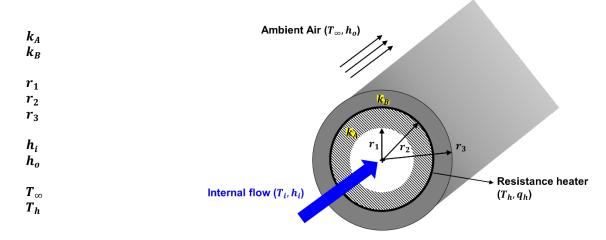
obtain from psychrometric chart: ω_2 @ T_2 and $\phi = 100\%$

$$\dot{m}_v = \dot{m}_a(\omega_1 - \omega_2)$$

4. Water flows inside a cylindrical titanium pipe ($k = k_p$) of length L in which the internal and external diameters are D_i and D_o , respectively. A large current is conducted through the pipe, causing $\dot{e}g$ heat to be generated in the pipe wall. The pipe is covered by a layer of material ($k = k_i$) and the resultant outer diameter is D_t . The heat transfer coefficients for water in the pipe and air surrounding the pipe are h_i and h_o , respectively. Which of the following diagrams represent the thermal circuit for calculating steady-state heat conduction for the pipe heater from water to air? (10 marks)

e) None of the options.

No thermal circuit exists for heat generation in material.


5. I A of current is passed through a t cm thick, L m long circular pipe with an internal diameter of d_i cm. If the electrical resistance of the pipe is R Ω , what is the volumetric heat generation rate (\dot{e}_g) for the pipe? (10 marks)

$$V=rac{\pi(d_o^2-d_i^2)L}{4}$$
 , $d_o=d_i+2t$
$$\dot{E}_g=I^2R$$

$$\dot{e}_{aen}=\dot{E}_a/V$$

LONG QUESTION (50 marks)

- 6. A composite cylindrical wall is composed of two materials of conductivity k_A and k_B , which are separated by a very thin, electric resistance heater for which the interfacial contact resistances are negligible. Liquid is pumped through the tube at a temperature of T_i and provides a convective heat transfer coefficient of h_i at the inner surface of the composite. The outer surface is exposed to ambient air, which is at T_∞ and provides a convective heat transfer coefficient of h_o . Under steady-state conditions, a uniform heat flux \dot{q}_h of 50 W/m² is dissipated by the heater which is maintained at a heater temperature of T_h .
 - A) Draw the equivalent thermal circuit and label the temperature points clearly.
 - **B)** Determine the temperature T_i based on the following parameters:

Ti
$$\frac{Q_{N}}{h_{1} 2 \pi_{1} r_{1}} L \frac{ln(r_{2}/r_{1})}{2 \pi_{KL}} \frac{ln(r_{3}/r_{1})}{2 \pi_{Kg} L} \frac{ln(r_{3}/r_{2})}{h_{0} 2 \pi_{1} r_{3}} L$$
 $\frac{1}{h_{1}} \frac{2 \pi_{1} r_{1}}{h_{1}} L \frac{ln(r_{2}/r_{1})}{2 \pi_{Kg} L} \frac{ln(r_{3}/r_{2})}{h_{0} 2 \pi_{1} r_{3}} L$
 $\frac{1}{h_{1}} \frac{2 \pi_{1} r_{1}}{h_{1}} L \frac{ln(r_{3}/r_{1})}{2 \pi_{Kg} L} \frac{ln(r_{3}/r_{2})}{h_{0} 2 \pi_{1} r_{3}} L$

Considering a 1 m long section (L = 1),

$$R_{1} = \frac{1}{h_{i} \times 2\pi r_{1}L}$$

$$R_{2} = \frac{\ln(r_{2}/r_{1})}{2\pi k_{A}L}$$

$$R_{3} = \frac{\ln(r_{3}/r_{2})}{2\pi k_{B}L}$$

$$R_{4} = \frac{1}{h_{o} \times 2\pi r_{3}L}$$

Energy balance:

$$\begin{split} \dot{Q}_{H} &= \dot{Q}_{in} + \dot{Q}_{out} \\ \dot{q}_{H}(2\pi r_{2}L) &= \frac{T_{H} - T_{i}}{R_{1} + R_{2}} + \frac{T_{H} - T_{\infty}}{R_{3} + R_{4}} \end{split}$$