

## MA3010 – 2<sup>nd</sup> Law of Thermodynamics

Dr Aw Kuan Thai ktaw@ntu.edu.sg

#### **Contents**

- 1) Introduction
- 2) Thermal Energy Reservoirs
- 3) Heat Engines
- 4) Kelvin-Planck Statement
- 5) Refrigerators & Heat Pumps
- 6) Clausius Statement
- 7) Perpetual Motion Machines
- 8) Reversible & Irreversible Processes
- 9) The Carnot Cycle
- 10) Carnot Principles
- 11) Thermodynamic Temperature Scale
- 12) Carnot Heat Engines, Refrigerators & Heat Pumps

Reference: Thermodynamics Chapter 6



#### **Introduction**

- Fulfilling the 1<sup>st</sup> law of thermodynamics does not guarantee that a process that take place
  - E.g. 1: Supplying light and heat to a filament lightbulb does not generate electric energy
  - E.g. 2: Hot coffee does not get hotter in a cooler room



https://picsart.com/i/gif-light-important-part-of-life-light-gif-bulb-cool-195138003001202



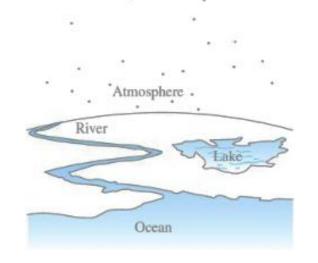
https://giphy.com/gifs/hot-coffee-giudanskycom-2jd7CRuYayGpW

- Processes occur in a certain direction and not in reverse
- A process must satisfy both 1<sup>st</sup> and 2<sup>nd</sup> laws of thermodynamics to proceed

# Introduction – 2<sup>nd</sup> Law of Thermodynamics

- 1. It identifies the direction of processes
- 2. It determines the theoretical limits for the performance of engineering systems, e.g. heat engines, refrigerators
  - Defines "perfection" for thermodynamic processes
  - Used as a benchmark for real engineering systems
- 3. It asserts that energy has *quality* as well as quantity determines degree of degradation of energy during a process
  - Energy at a high temperature has better quality than the same energy at a low temperature
- 4. Predicts degree of completion for chemical reactions
  - A process is completed when entropy stops increasing

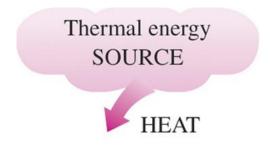



### **Thermal Energy Reservoirs**

- Hypothetical body with a relatively large thermal energy capacity (mass x specific heat) that can absorb/supply finite amounts of heat without undergoing any change in temperature
- In practice, large bodies of water (oceans, lakes, rivers) and the atmospheric air can be modelled as thermal energy reservoirs

$$Q = m \times c \times \Delta T$$

$$\Delta T = \frac{Q}{M}$$


Thermal energy capacity





# **Thermal Energy Reservoirs – Heat Source & Heat Sink**


- Source: supplies heat energy
- Sink: absorbs heat energy

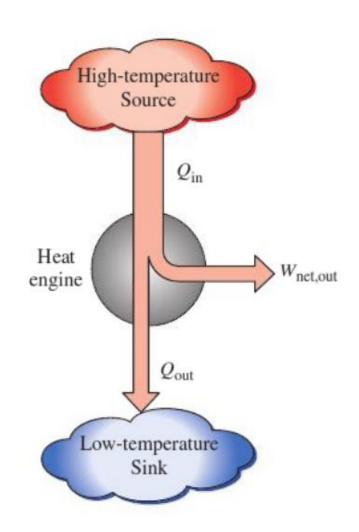


e.g. Sun, furnace, etc

Can be simplified to:



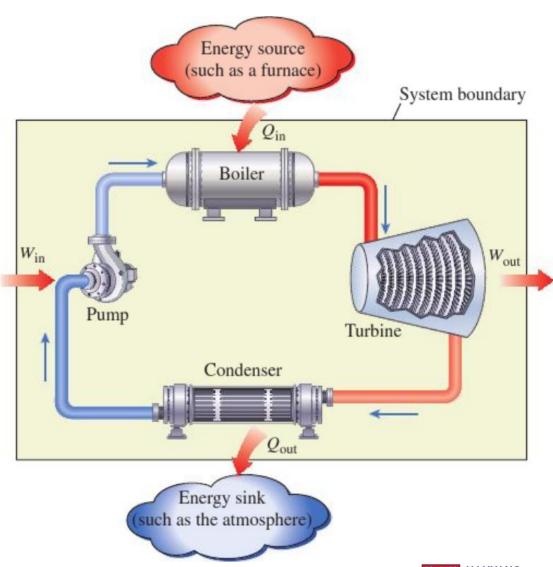



e.g. river, atmosphere, etc Can be simplified to:





### **Heat Engines**

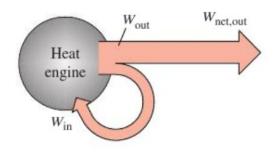

- Work is easily converted into other forms of energy such as heat but the reverse is more difficult
- Heat engines convert heat to work
  - Receive heat from a hightemperature source
  - Convert part of the heat received to work
  - Reject the remaining waste heat to a low-temperature sink
  - Operate on a cycle
- Typically uses a fluid to transfer heat, known as the working fluid

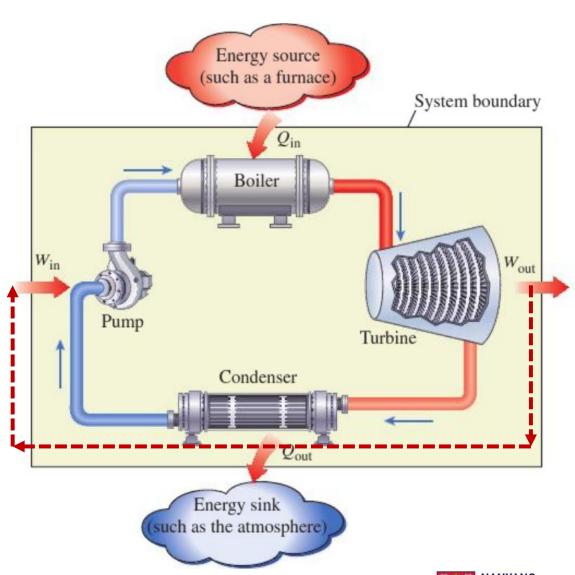




### **Heat Engines – Steam Power Plant**

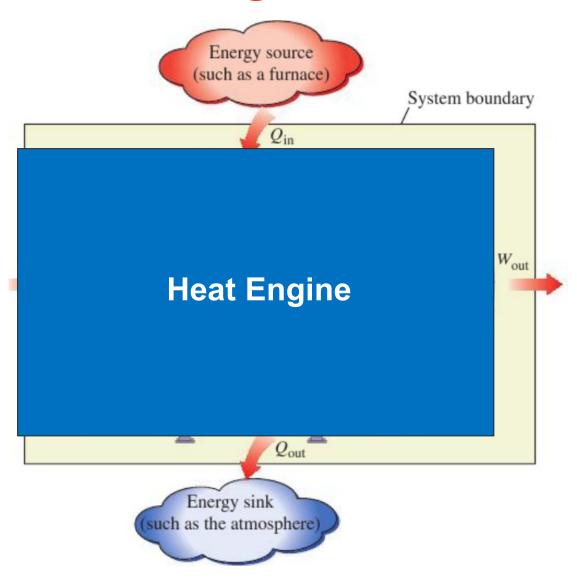
- Water/steam as the working fluid
- $Q_{in}$  = heat supplied to steam in boiler
- $W_{out}$  = work extracted from steam in turbine
- $Q_{out}$  = heat rejected by steam in condenser
- $W_{in}$  = work required to pump water into boiler



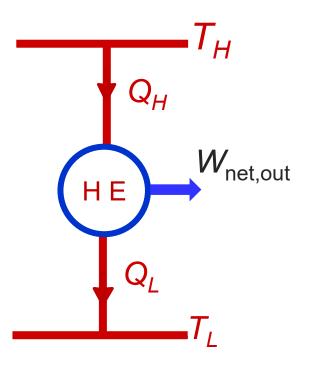




### **Heat Engines**

- Part of work output is used to drive the pump
- Net output from heat engine:


$$W_{net,out} = W_{out} - W_{in}$$








### **Heat Engines**

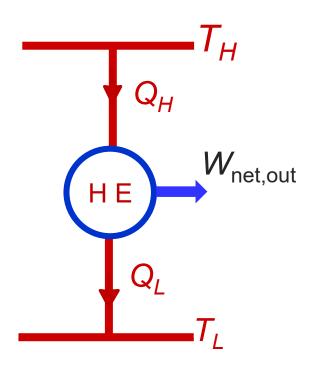


#### Simplified:





### **Heat Engines – Energy Balance**


From 1st Law:  $Q - W = \Delta U$ 

Sign convention: arrow going into system = +ve

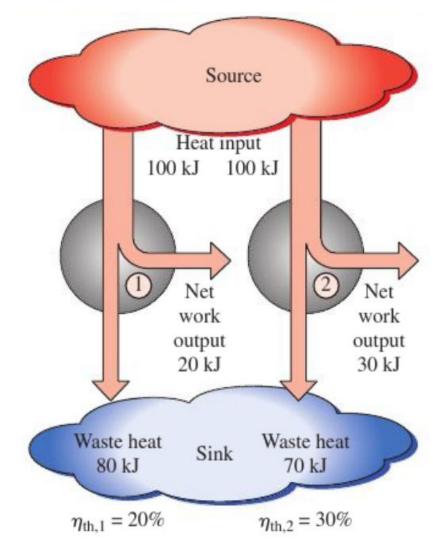
For a cycle: Q - W = 0

$$Q_H + (-Q_L) - W_{net,out} = 0$$

$$W_{net,out} = Q_H - Q_L$$





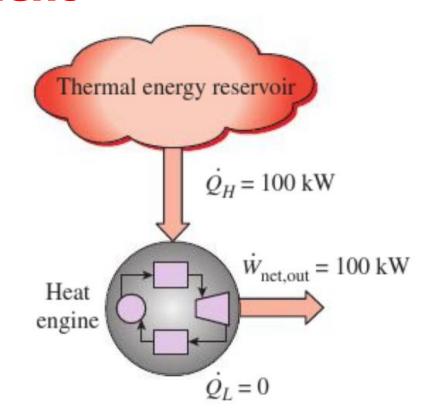

### **Heat Engines – Thermal Efficiency**

 A measure of how well a heat engine converts heat input into useful work

Thermal Efficiency = 
$$\frac{\text{Net work output}}{\text{Total heat input}}$$

$$\eta_{\rm th} = \frac{W_{net,out}}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}}$$

$$\eta_{\rm th} = \frac{W_{net,out}}{Q_H} = 1 - \frac{Q_L}{Q_H}$$






# 2<sup>nd</sup> Law of Thermodynamics – Kelvin-Planck Statement

$$\eta_{\rm th} = 1 - \frac{Q_L}{Q_H}$$

- If  $Q_L = 0$ , heat engine will have 100% efficiency
- However, there is always waste heat produced
- The cycle cannot be completed without rejecting heat to a lowtemperature sink

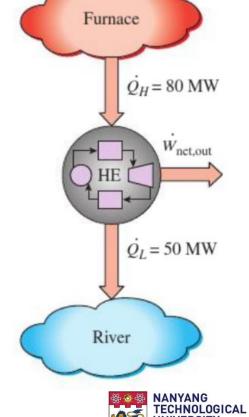


#### **Kelvin-Planck Statement:**

It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.

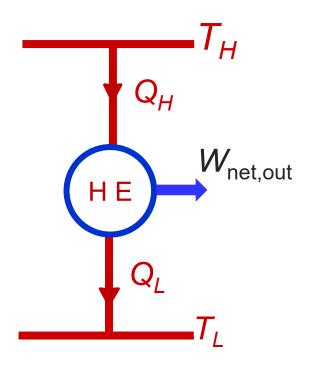
Even theoretically perfect heat engines do not have an efficiency of 100%!



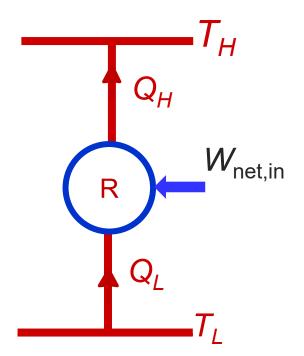

# Example 1 – Net Power Production of a Heat Engine

Heat is transferred to a heat engine from a furnace at a rate of 80 MW. If the rate of waste heat rejection to a nearby river is 50 MW, determine the net power output and the thermal efficiency for this heat engine.

Assumptions: Negligible heat losses through pipes & other components


$$\dot{W}_{net,out} = \dot{Q}_H - \dot{Q}_L$$
$$= 80 - 50 = 30 \text{ MW}$$

$$\eta_{th} = \frac{\dot{W}_{net,out}}{\dot{Q}_H}$$
$$= \frac{30 \text{ MW}}{80 \text{ MW}} = 0.375$$

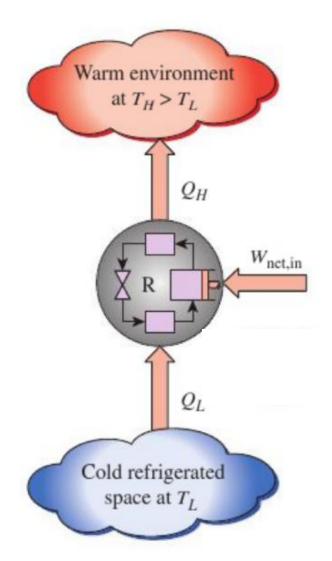



### **Reverse Heat Engines**

Heat Engine:



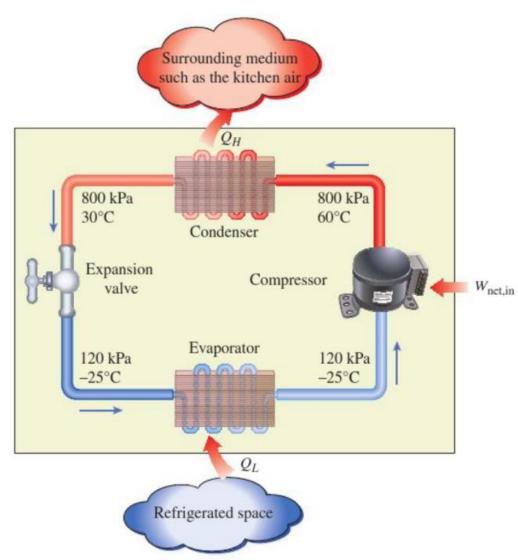
Reverse Heat Engine:




Refrigerator/Heat Pump

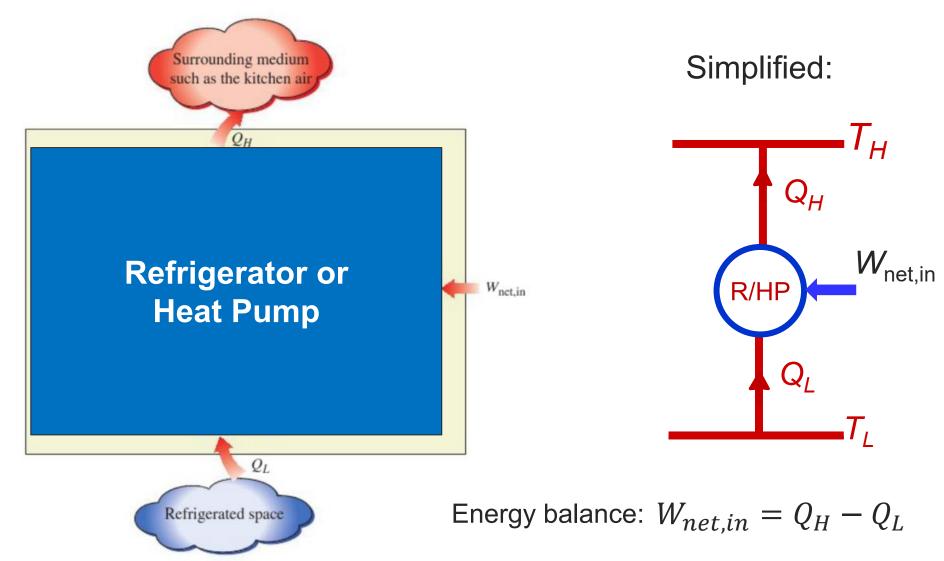


### **Refrigerators and Heat Pumps**


- Heat transfer from high temperatures to low temperatures by nature
- The opposite can only be achieved using refrigerators and heat pumps
- Refrigerators and heat pumps are simply "reverse heat engines"
- Operate in a cycle
- Working fluid is called a refrigerant






### **Refrigerators and Heat Pumps**

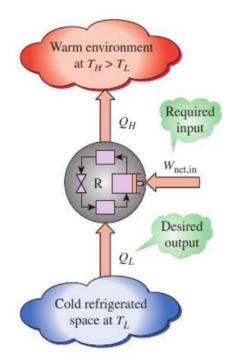
- Vapour-compression refrigeration system is the most commonly used cycle
- $W_{in}$  = work input to compressor to compress refrigerant from low to high pressure
- $Q_H$  = heat rejected by refrigerant in condenser
- $Q_L$  = heat absorbed by refrigerant in evaporator

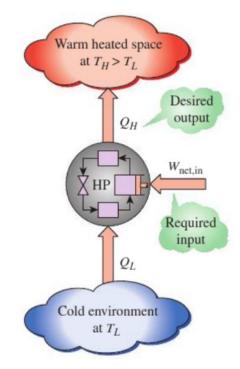




### **Refrigerators and Heat Pumps**







#### **Coefficient of Performance**

 Efficiency of refrigerators and heat pumps is expressed in terms of coefficient of performance

Coefficient of Performance = 
$$\frac{\text{Desired output}}{\text{Required input}}$$

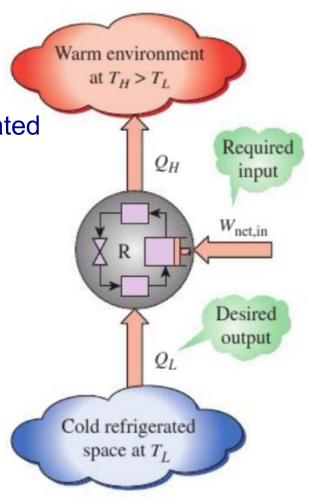
Formula depends on the function of the machine:







# **Coefficient of Performance – Refrigerator**


 $Coefficient of Performance = \frac{Desired output}{Required input}$ 

Function of a refrigerator is to cool the refrigerated space:

$$COP_{R} = \frac{Q_{L}}{W_{\text{net,in}}}$$

Energy balance:  $W_{net,in} = Q_H - Q_L$ 

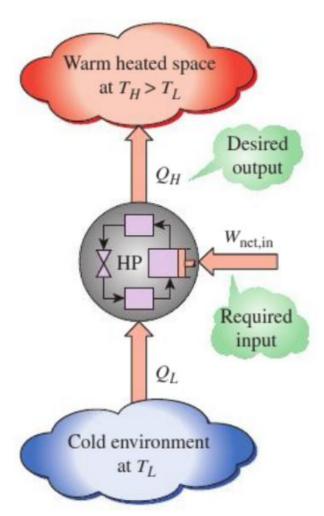
$$COP_{R} = \frac{Q_L}{Q_H - Q_L} = \frac{1}{Q_H/Q_L - 1}$$





# **Coefficient of Performance – Heat Pump**

Coefficient of Performance =  $\frac{\text{Desired output}}{\text{Required input}}$ 


Function of a heat pump is to warm the heated space:

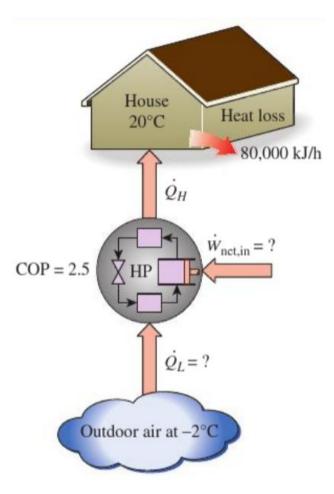
$$COP_{HP} = \frac{Q_H}{W_{\text{net,in}}}$$

Energy balance:  $W_{net,in} = Q_H - Q_L$ 

$$COP_{HP} = \frac{Q_H}{Q_H - Q_L} = \frac{1}{1 - Q_L/Q_H}$$

For the same  $Q_H \& Q_L$ ,  $COP_{HP} = COP_R + 1$ 





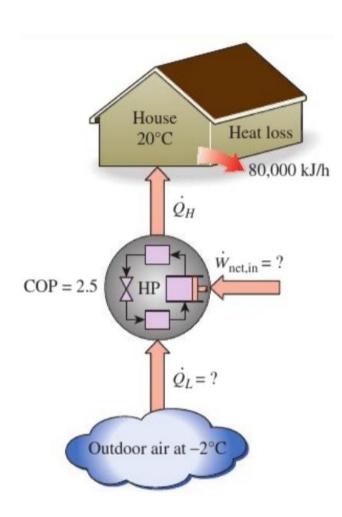

# Example 2 – Heating a House with a Heat Pump

A heat pump is used to meet the heating requirements of a house and maintain it at 20°C. On a day when the outdoor air temperature drops to -2°C, the house is estimated to lose heat at a rate of 80,000 kJ/h. If the heat pump under these conditions has a COP of 2.5, determine the power consumed by the heat pump and the rate at which heat is absorbed from the cold outdoor air.

**Assumptions:** 

Steady-state operating conditions





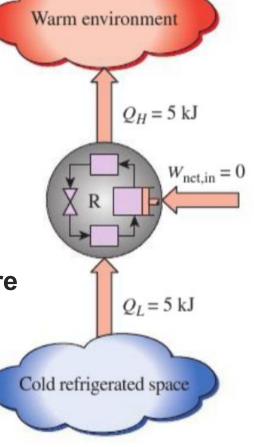

## Example 2 — Heating a House with a **Heat Pump**

Heat pump delivers the same rate of heat as the heat loss of the house to maintain the indoor temperature:

$$\dot{Q}_{H} = 80,000 \text{ kJ/h}$$
 $COP_{HP} = \frac{Q_{H}}{W_{\text{net,in}}}$ 
 $\dot{W}_{\text{net,in}} = \frac{\dot{Q}_{H}}{COP_{HP}}$ 
 $= \frac{80,000 \text{ kJ/h}}{2.5} = 32,000 \text{ kJ/h}$ 
 $\dot{Q}_{L} = \dot{Q}_{H} - \dot{W}_{\text{net,in}}$ 

$$\dot{Q}_L = \dot{Q}_H - \dot{W}_{\text{net,in}}$$
  
= 80,000 - 32,000 = 48,000 kJ/h

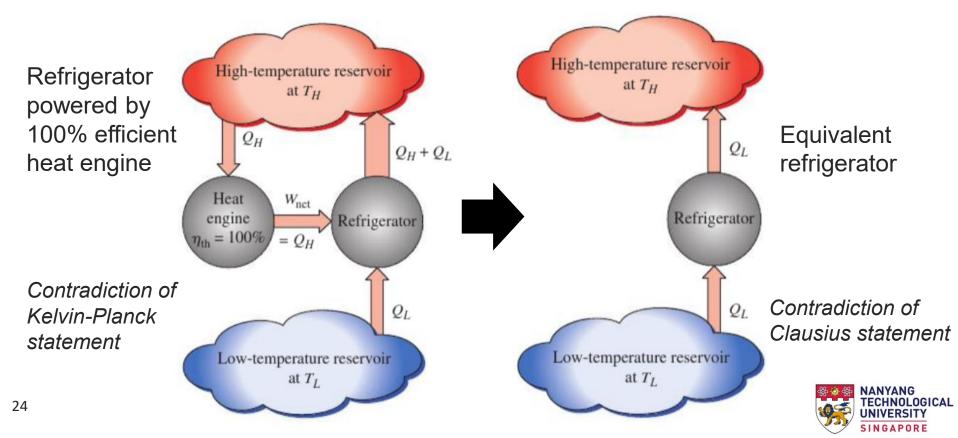





## 2<sup>nd</sup> Law of Thermodynamics – Clausius Statement

- Heat is never transferred from a cold medium to a warmer one in nature
- Impossible to have a working refrigerator/heat pump that requires no power input

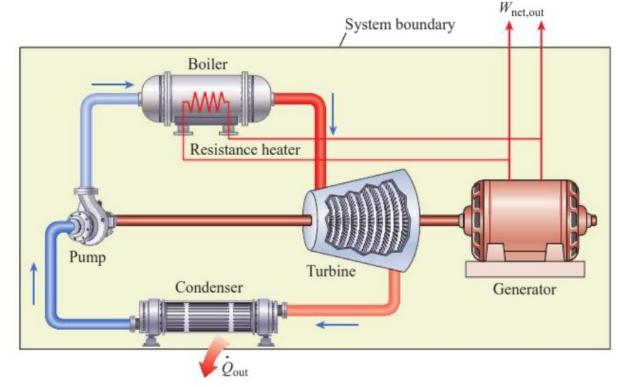
#### **Clausius Statement:**


It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body.





### **Equivalence of the Two Statements**

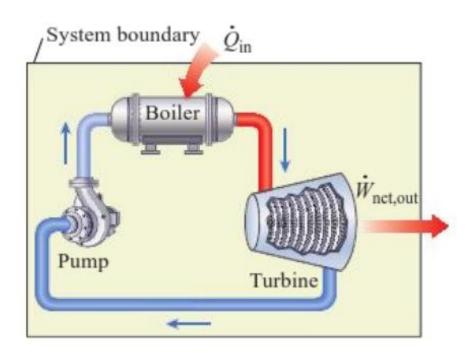

- Kelvin-Planck statement and the Clausius statement are equivalent
- Any device that contradicts either statement, would contradict the other statement as well



### **Perpetual Motion Machines (PMM)**

- A device that contradicts either the 1<sup>st</sup> law or 2<sup>nd</sup> law of thermodynamics
  - Contradiction of the 1<sup>st</sup> law: perpetual motion machine of the first kind (PMM1)

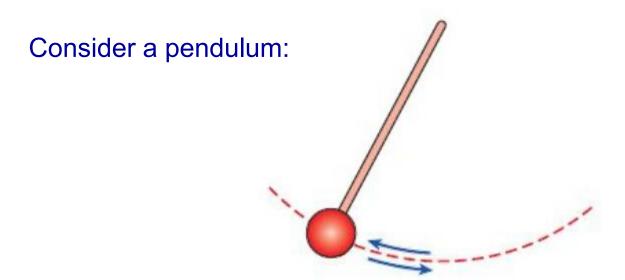
#### PMM1:






### **Perpetual Motion Machines (PMM)**

- A device that violates either the 1<sup>st</sup> law or 2<sup>nd</sup> law of thermodynamics
  - Contradiction of the 2<sup>nd</sup> law: perpetual motion machine of the second kind (PMM2)


PMM2:





#### **Reversible & Irreversible Processes**

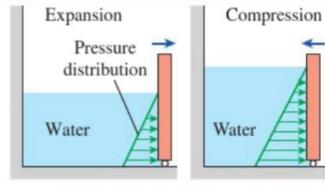
Recall: 2<sup>nd</sup> law can determine the *theoretical limits* for performance of engineering systems/processes



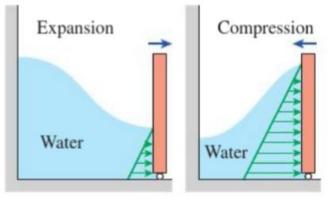
Process in which there is continuous conversion between potential and kinetic energy of the mass

What is its theoretical limit?




#### **Reversible & Irreversible Processes**

- An ideal pendulum would be a frictionless pendulum
  - 'Perfect' conversion between kinetic and potential energy
- A reversible process is defined as one which can be reversed without leaving any trace on the surroundings
  - The state of the system & surroundings can be reverted to initial states at the end of the reverse process
  - Theoretical/ideal process
- An irreversible process is the opposite of a reversible process
  - Characteristic of all processes in nature
- Reversible processes deliver the most and consume the least work
  - Serve as the theoretical limit for its corresponding irreversible process
  - Easy to analyse



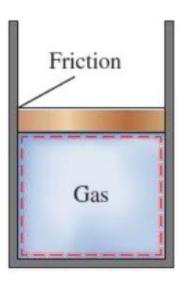

#### **Reversible & Irreversible Processes**

- Reversible processes are idealizations of actual processes
- Actual devices/systems can be approximated as reversible processes at best
- Actual processes are compared against their corresponding idealized/reversible processes to determine its efficiency



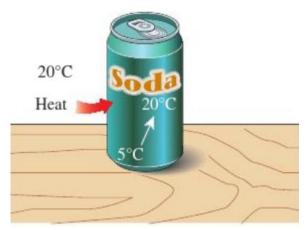
(a) Slow (reversible) process



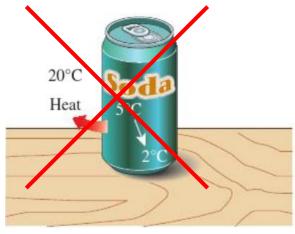

(b) Fast (irreversible) process



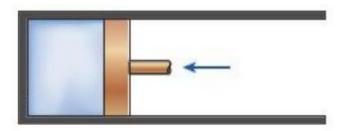
#### **Irreversibilities**


- Factors that cause a process to be irreversible
  - Friction
  - Heat transfer across finite temperature difference
  - Mixing of two fluids
  - Unrestrained expansion
  - Electrical resistance
  - Inelastic deformation of solids
  - Chemical reaction

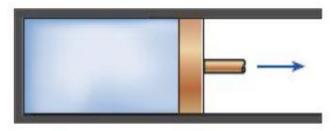








### **Irreversibilities**




Heat transfer across finite temp. difference



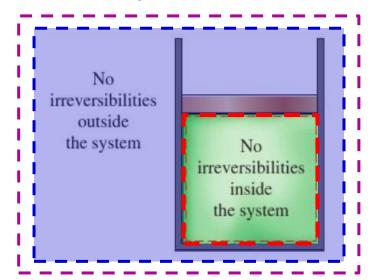
Impossible reverse process



(a) Fast compression



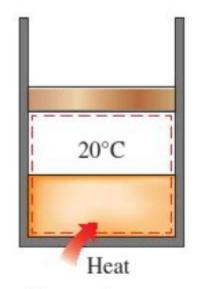
(b) Fast expansion




(c) Unrestrained expansion



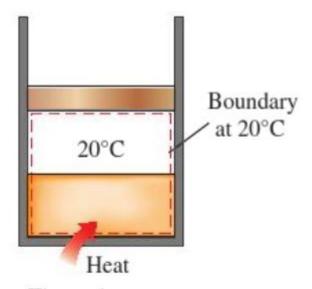
# **Internally & Externally Reversible Processes**


- Internally reversible: if no irreversibilities occur within the system boundaries (red box)
- Externally reversible: if no irreversibilities occur outside the system boundaries (blue box)
- Totally reversible: internally + externally reversible; i.e. no irreversibilities within the system or surroundings (magenta box)





# **Internally & Externally Reversible Processes**


 Example of internally reversible process: boiling of a fluid (constant temperature & pressure process)



Thermal energy reservoir at 20.000...1°C

(a) Totally reversible

$$\Delta T = 20.00 \dots 1 - 20$$
  
= 0.000 \dots 1°C  
\approx 0°C



Thermal energy reservoir at 30°C

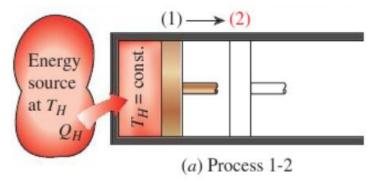
(b) Internally reversible

$$\Delta T = 10^{\circ} \text{C}$$

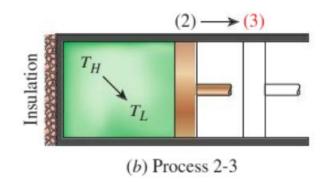


### **Carnot Cycle**

- Proposed by French engineer Sadi Carnot in 1824
- Theoretical cycle
- Consists of 4 reversible processes:
  - 2 isothermal processes
  - 2 adiabatic processes
- Applicable to closed systems or steady flow systems
- Sets the theoretical limits for heat engines, refrigerators and heat pumps



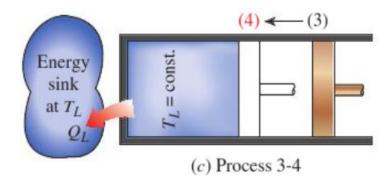

### **Carnot Cycle**


a) Reversible Isothermal Expansion  $(1 - 2, T_H = const.)$ 

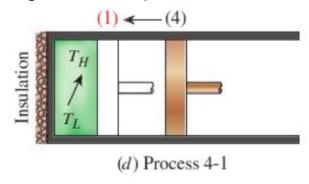
Gas expands at constant temp. while absorbing heat from energy

source




- b) Reversible Adiabatic Expansion (2 3,  $T_H$  drops to  $T_L$ )
  - Gas does work on surroundings and expands while its temp. drops






## **Carnot Cycle**

- c) Reversible Isothermal Compression (3 4,  $T_L$  = const.)
  - Gas compression at constant temp. while losing heat to energy sink



- d) Reversible Adiabatic Compression (4 1,  $T_L$  rises to  $T_H$ )
  - Work done on gas to compress it and its temp. rises

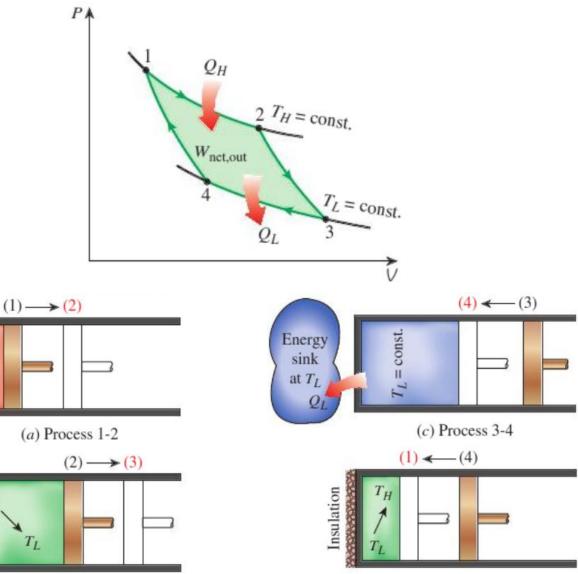




## **Carnot Cycle – PV Diagram**

const.

TH

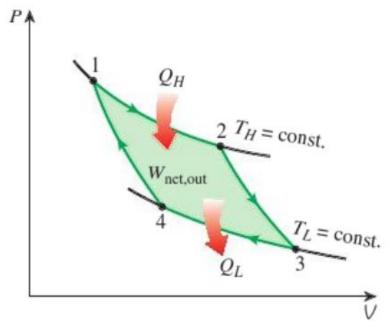

 $T_L$ 

(b) Process 2-3

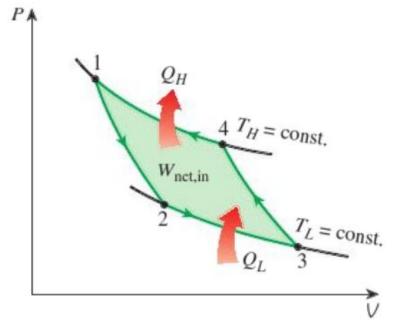
Insulation

Energy

source at  $T_H$ 







(d) Process 4-1

## **Reversed Carnot Cycle**

- The Carnot cycle is a totally reversible cycle
- A reversed Carnot cycle becomes the Carnot refrigeration cycle



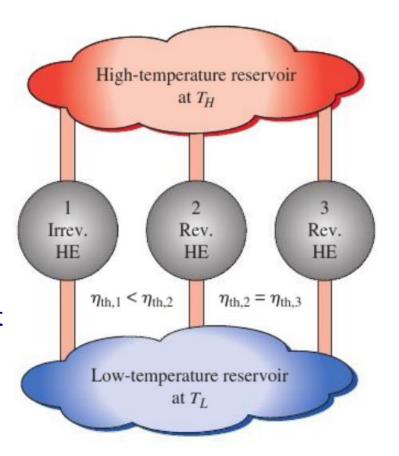
Carnot heat-engine cycle



Reversed Carnot heat-engine cycle

Carnot refrigeration cycle




## **Carnot Principles**

1. The efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs.

$$\eta_{th,1,irrev} < \eta_{th,2,rev}$$

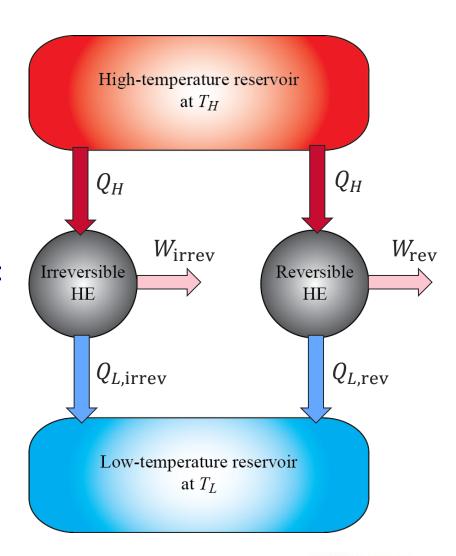
2. The efficiencies of all reversible heat engines operating between the same two reservoirs are the same.

$$\eta_{th,2,rev} = \eta_{th,3,rev}$$



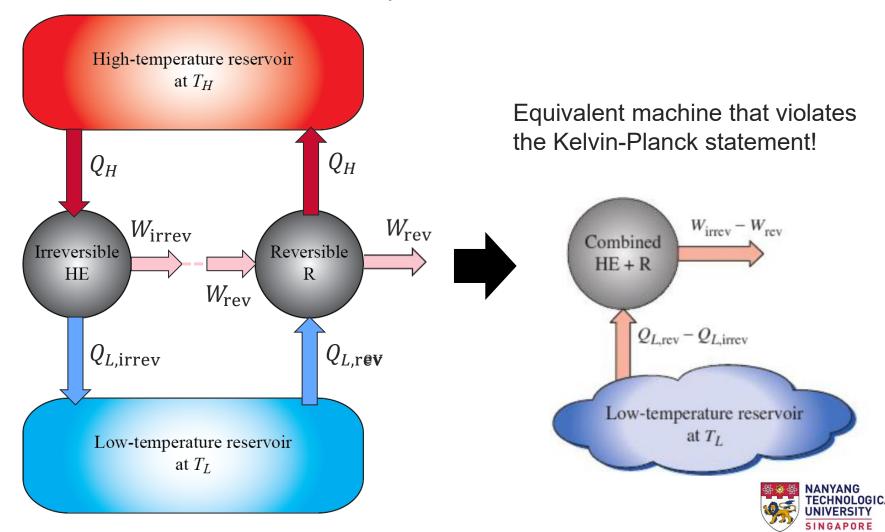


Assume a violation of the principles such that:


$$\eta_{th,irrev} > \eta_{th,rev}$$

 The output work from an irreversible HE would be higher than a reversible HE in this case:

$$W_{\rm irrev} > W_{\rm rev}$$


 The heat rejected for an irreversible HE would consequently lower than a reversible HE:

$$Q_{L,\text{irrev}} < Q_{L,\text{rev}}$$

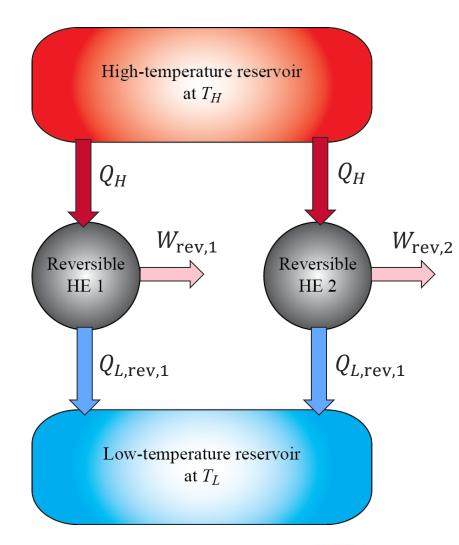




Reverse the reversible HE, power the reversible R with the HE:

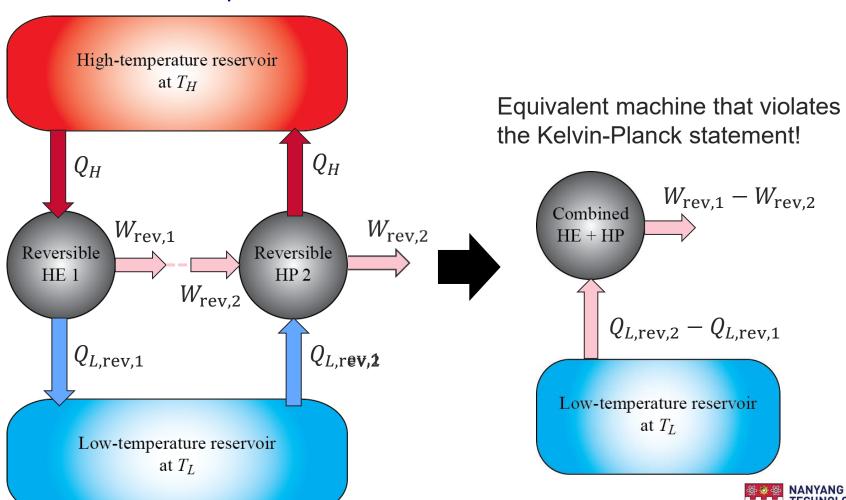


Assume a violation of the principles such that:


$$\eta_{th,\text{rev,1}} > \eta_{th,\text{rev,2}}$$

 The output work from reversible HE 1 would be higher than reversible HE 2:

$$W_{\text{rev},1} > W_{\text{rev},2}$$


 The heat rejected for reversible HE 1 would then be lower than reversible HE 2:

$$Q_{L,\text{rev},1} < Q_{L,\text{rev},2}$$





Reverse HE 2, power it with HE 1:



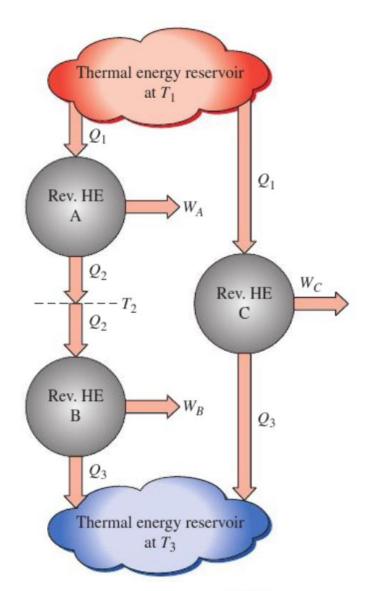
- A temperature scale that is independent of the properties of substances that are used to measure temperature is called a thermodynamic temperature scale
- Offers great convenience for thermodynamic calculations
- Recall the Carnot principle: all reversible heat engines operating between the same two reservoirs have the same efficiency.
- Thermal reservoirs are characterized only by their temperatures
- Thermal efficiencies of reversible heat engines can be expressed as a function of reservoir temperatures



#### Derivation

 Thermal efficiencies of rev. HE is a function of temperature only:

$$\eta_{th,\text{rev}} = g(T_H, T_L) = 1 - \frac{Q_L}{Q_H}$$


$$ightarrow rac{Q_L}{Q_H}$$
 or  $rac{Q_H}{Q_L} = f(T_H, T_L)$ 

For the three heat engines:

$$\frac{Q_1}{Q_2} = f(T_1, T_2)$$

$$\frac{Q_2}{Q_3} = f(T_2, T_3)$$

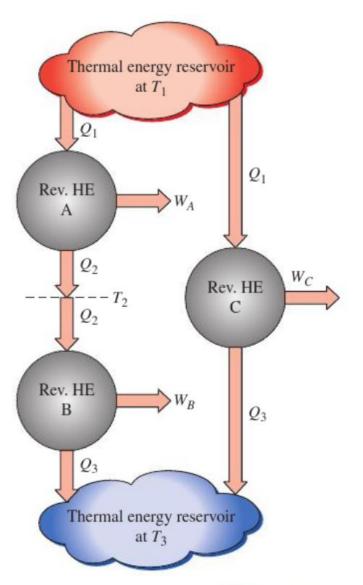
$$\frac{Q_1}{Q_3} = f(T_1, T_3)$$





#### Derivation

Let's consider:


$$\because \frac{Q_1}{Q_3} = \frac{Q_1}{Q_2} \cdot \frac{Q_2}{Q_3}$$

$$f(T_1, T_3) = f(T_1, T_2) \cdot f(T_2, T_3)$$

- Product of functions on RHS must cause the T<sub>2</sub> term to disappear
- Only possible if function f is of the form:

$$f(T_1, T_2) = \frac{\phi(T_1)}{\phi(T_2)}$$
  $f(T_2, T_3) = \frac{\phi(T_2)}{\phi(T_3)}$ 

$$\rightarrow f(T_1, T_3) = \frac{\phi(T_1)}{\phi(T_3)} = \frac{Q_1}{Q_3}$$

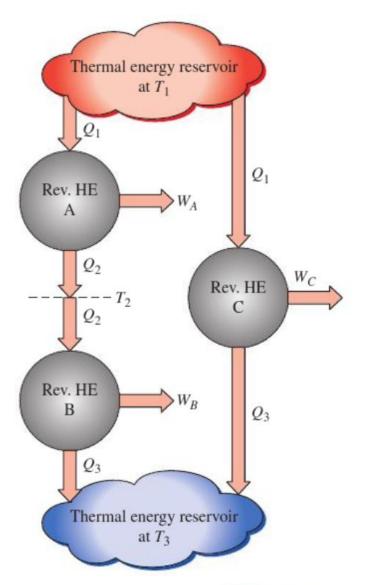




#### Derivation

Therefore, for a reversible HE:

$$\left(\frac{Q_H}{Q_L}\right)_{\text{rev}} = \frac{\phi(T_H)}{\phi(T_L)}$$


Lord Kelvin thus propose and define:

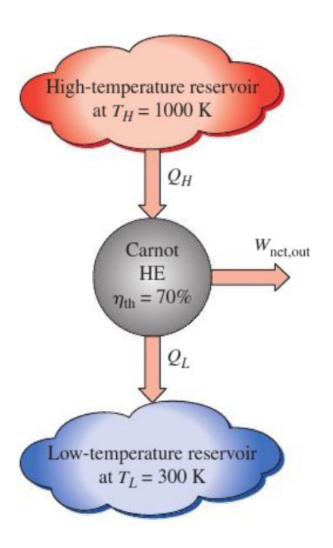
$$\phi(T) = T$$

 The thermodynamic temperature scale is therefore defined as:

$$\left(\frac{Q_H}{Q_L}\right)_{\text{rev}} = \frac{T_H}{T_L}$$

Note: 
$$Q_H \neq T_H$$
  
 $Q_L \neq T_L$ 






- This temperature scale is called the Kelvin scale
- Temperatures on this scale are called absolute temperatures

$$T(K) = T(^{\circ}C) + 273.15$$

 Magnitudes of temperature units on the Kelvin and Celsius scales are the same:

$$1 \text{ K} \equiv 1^{\circ}\text{C}$$





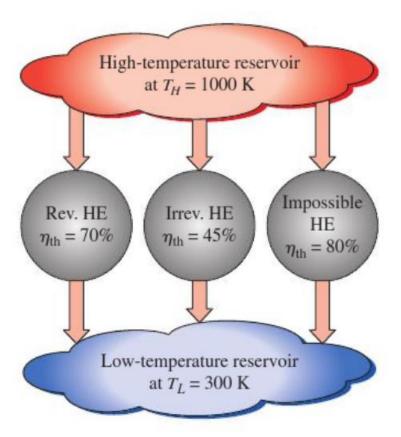
## **Carnot Heat Engines**

- Hypothetical heat engine operating on the Carnot cycle
- Most efficient (ideal) heat engine
- Recall that the thermal efficiency of any heat engine is:

$$\eta_{th} = 1 - \frac{Q_L}{Q_H}$$

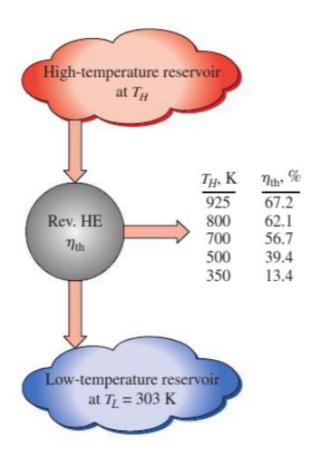
From the thermodynamic temperature scale,

$$\left(\frac{Q_H}{Q_L}\right)_{\text{rev}} = \frac{T_H}{T_L} \quad \text{or} \quad \left(\frac{Q_L}{Q_H}\right)_{\text{rev}} = \frac{T_L}{T_H}$$


Thermal efficiency of a Carnot heat engine:

$$\eta_{th, rev} = 1 - \frac{T_L}{T_H}$$
 (Carnot efficiency)

Absolute temperatures only!




## **Carnot Heat Engines**



$$\eta_{\text{th}}$$

$$\begin{cases}
< & \eta_{\text{th,rev}} & \text{irreversible heat engine} \\
= & \eta_{\text{th,rev}} & \text{reversible heat engine} \\
> & \eta_{\text{th,rev}} & \text{impossible heat engine}
\end{cases}$$



- Efficiency increases with source temperature
- Energy has higher quality at higher temperatures.



## **Carnot Refrigerators & Heat Pumps**

- A device that operates on the reversed Carnot cycle
- Recall that the coefficient of performance for any refrigerator or heat pump are:

$$COP_R = \frac{1}{Q_H/Q_L - 1}$$
 &  $COP_{HP} = \frac{1}{1 - Q_L/Q_H}$ 

Coefficient of performance for a Carnot refrigerator:

$$COP_{R,rev} = \frac{1}{T_H/T_L - 1}$$

Coefficient of performance for a Carnot heat pump:

$$COP_{HP,rev} = \frac{1}{1 - T_L/T_H}$$



## **Carnot Refrigerators & Heat Pumps**



$$\begin{aligned} & \text{COP}_{R} \begin{cases} < & \text{COP}_{R,\text{rev}} & \text{irreversible refrigerator} \\ = & \text{COP}_{R,\text{rev}} & \text{reversible refrigerator} \\ > & \text{COP}_{R,\text{rev}} & \text{impossible refrigerator} \end{cases} \end{aligned}$$

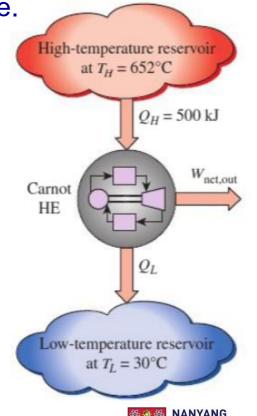
irreversible refrigerator impossible refrigerator

Same principles apply to heat pumps



# **Example 3: Analysis of a Carnot Heat Engine**

A Carnot heat engine receives 500 kJ of heat per cycle from a high-temperature source at 652°C and rejects heat to a low-temperature sink at 30°C. Determine the thermal efficiency of this Carnot engine and the amount of heat rejected to the sink per cycle.


$$\eta_{th,rev} = 1 - \left(\frac{Q_L}{Q_H}\right)_{rev} = 1 - \frac{T_L}{T_H}$$

$$= 1 - \frac{(30 + 273)K}{(652 + 273)K} = 0.672$$

$$\left(\frac{Q_L}{Q_H}\right)_{\text{rev}} = \frac{T_L}{T_H}$$

$$Q_{L,\text{rev}} = \frac{T_L}{T_H} \cdot Q_{H,\text{rev}}$$

$$= \frac{(30 + 273)\text{K}}{(652 + 273)\text{K}} (500\text{kJ}) = 164 \text{ kJ}$$



### **Summary**

- Processes can only proceed in one direction and satisfy both the 1<sup>st</sup> and 2<sup>nd</sup> Laws of Thermodynamics
- Thermal energy reservoirs can absorb/supply finite amounts of heat without any change in temperature
- Two classes of cyclic devices that operate between  $T_H$  and  $T_L$  thermal energy reservoirs:
  - Heat engines that produce work output
  - Refrigerators absorb heat from  $T_L$  reservoirs and heat pumps supply heat to  $T_H$  reservoirs, both require work input
- Thermal efficiency of a heat engine:  $\eta_{\rm th} = 1 \frac{Q_L}{Q_H}$
- Coefficients of performance (refrigerators & heat pumps):

$$COP_{R} = \frac{1}{Q_{H}/Q_{L} - 1}$$
  $COP_{HP} = \frac{1}{1 - Q_{L}/Q_{H}}$ 



## **Summary**

- Reversible processes are ideal processes that can be reversed and are the most efficient
- Actual processes are irreversible due to the presence of irreversibilities
- The Carnot cycle is a reversible cycle that possess the best possible efficiency which is dependent only on  $T_H$  and  $T_L$
- The thermodynamic temperature scale is derived from the Carnot principles
- For a reversible Carnot cycle:  $\left(\frac{Q_L}{Q_H}\right)_{\text{rev}} = \frac{T_L}{T_H}$
- Carnot efficiency for heat engines:  $\eta_{th, rev} = 1 \frac{T_L}{T_H}$
- Coefficients of performance for reversed Carnot cycle:

$$COP_{R,rev} = \frac{1}{T_H/T_L - 1}$$
  $COP_{HP,rev} = \frac{1}{1 - T_L/T_H}$ 

