WS TECHNOLOGICAL
QS5 UNIVERSITY

SINGAPORE

MA3010 - 2nd Law of
Thermodynamics

Dr Aw Kuan Thai
ktaw@ntu.edu.sg



Contents

1) Introduction

2) Thermal Energy Reservoirs

3) Heat Engines

4) Kelvin-Planck Statement

9) Refrigerators & Heat Pumps

6) Clausius Statement

7) Perpetual Motion Machines

8) Reversible & Irreversible Processes

9) The Carnot Cycle

10) Carnot Principles

11) Thermodynamic Temperature Scale

12) Carnot Heat Engines, Refrigerators & Heat Pumps
Reference: Thermodynamics Chapter 6

fegctesl NANYANG
< | TECHNOLOGICAL
wg\;’ UNIVERSITY

7 SINGAPORE




Introduction

 Fulfilling the 18t law of thermodynamics does not guarantee that
a process that take place

— E.g. 1: Supplying light and heat to a filament lightbulb does not
generate electric energy

— E.g. 2: Hot coffee does not get hotter in a cooler room

https://picsart.com/i/gif-light-important-part-of-life-light-gif- https://giphy.com/gifs/hot-coffee-giudanskycom-2jd7CRuYayGpW
bulb-cool-195138003001202

* Processes occur in a certain direction and not in reverse

« A process must satisfy both 1st and 2"d laws of thermodynamics
to proceed opesey NANYANG
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Introduction — 2" Law of
Thermodynamics

1. It identifies the direction of processes

2. It determines the theoretical limits for the performance of
engineering systems, e.g. heat engines, refrigerators

— Defines “perfection” for thermodynamic processes
— Used as a benchmark for real engineering systems

3. It asserts that energy has quality as well as quantity —
determines degree of degradation of energy during a process

— Energy at a high temperature has better quality than the same
energy at a low temperature

4. Predicts degree of completion for chemical reactions
— A process is completed when entropy stops increasing

bogctod NANYANG
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Thermal Energy Reservoirs

« Hypothetical body with a relatively large thermal energy capacity
(mass x specific heat) that can absorb/supply finite amounts of
heat without undergoing any change in temperature

» |In practice, large bodies of water (oceans, lakes, rivers) and the
atmospheric air can be modelled as thermal energy reservoirs

Q=mXcXAT

Q . ’ ‘.-\m\.-ﬁ»\phc.rc.

AT = @gf’m;}’ N il S s
o
, T ===
Thermal energy capacity e
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Thermal Energy Reservoirs — Heat

Source & Heat Sink

« Source: supplies heat energy
« Sink: absorbs heat energy

Thermal energy
SOURCE

¥ HEAT
e.g. Sun, furnace, etc

Can be simplified to:

Ty
‘ Qpy

HEAT

Thermal energy
SINK

e.g. river, atmosphere, etc

Can be simplified to:

Q
T
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Heat Engines

 Work is easily converted into
other forms of energy such as
heat but the reverse is more
difficult

 Heat engines convert heat to
work

— Receive heat from a high-
temperature source

— Convert part of the heat received
to work

— Reject the remaining waste heat
to a low-temperature sink

— Operate on a cycle

» Typically uses a fluid to transfer
heat, known as the working fluid

Heat

; W
engine

J
nctout

(-)\ il
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Heat Engines — Steam Power Plant

Energy source

 \Water/steam as the
WOI’king fluid /Systcm boundary

* Q,, = heat supplied to
steam in boiler

- W,,=work extracted |"i
from steam in turbine [ "®

« Q,,= heatrejected by I
steam in condenser

« W, = work required to
pump water into boiler

" Energy sink
th as the atmosphe
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Heat Engines

» Part of work output is
used to drive the

pump

/Systcm boundary

* Net output from heat
engine:

‘vbul
_ 4 i he
Wnet,out = Wour — Wi i /. :
: Turbine I
I |
[ I Condenser l :
Wact,out : : FT |
> I . - ‘ - ; - I
Energy sink
h as the atmosphe

STl NANYANG
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Heat Engines
| Simplified:

Energy source
(such as a furnace,
‘ System boundary

/
Qin TH

net,out

Heat Engine

‘ Qoul

“Energy sink
th as the atmosphe
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Heat Engines — Energy Balance

From1stLaw: Q—W =AU

Sign convention: arrow going into system = +ve
For a cycle: Q—-W=20

net,out

Qu + (—0QL) — Whetour =0

Wnet,out — QH — QL
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Heat Engines — Thermal Efficiency

* A measure of how well a heat
engine converts heat input into

useful work
eat input
. Net work output 100k]  100kJ
Thermal Efficiency = ,
Total heat input
— Wnet,out — 1 i QO‘UI Net Net
Nth = —FH ,
Qin Qin work work
output output
30 kJ
Nep = Wnet,out —|1 QL
th =  —|L — 5~
Qu Qu

NANYANG
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2"d | aw of Thermodynamics —
Kelvin-Planck Statement

QL
=1 -—
Tth QH

« If Q, =0, heat engine will have
100% efficiency

« However, there is always waste
heat produced

 The cycle cannot be completed
without rejecting heat to a low-
temperature sink

100 kW

Kelvin-Planck Statement:
It is impossible for any device that operates on a cycle to receive
heat from a single reservoir and produce a net amount of work.

Even theoretically perfect heat engines do not have an efficiency of 100%!

k] NANYANG
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Example 1 — Net Power Production
of a Heat Engine

Heat is transferred to a heat engine from a furnace at a rate of 80
MW. If the rate of waste heat rejection to a nearby river is 50 MW,
determine the net power output and the thermal efficiency for thls

heat engine.

Assumptions: Negligible heat losses through pipes &
other components

Wnet,out — QH - QL
=80 —-50 =30 MW

Logcoged NANYANG
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Reverse Heat Engines

Heat Engine:

W

net,out

Reverse Heat Engine:

‘/a-\ !/ UNIVERSITY
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Refrigerators and Heat Pumps

» Heat transfer from high temperatures to ’ arm environment
low temperatures by nature

 The opposite can only be achieved
using refrigerators and heat pumps

» Refrigerators and heat pumps are
simply “reverse heat engines”

* Operate in a cycle
« Working fluid is called a refrigerant

netan

Cold rcfrigcratcd
space at 7
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Refrigerators and Heat Pumps

« Vapour-compression
refrigeration system is the
most commonly used
cycle

800 kPa
30°C

« W, =work input to
compressor to compress {}@
refrigerant from low to
high pressure

Expansion

valve W,

ncLin

* Oy = heat rejected by —
refrigerant in condenser

* (@, = heat absorbed by
refrigerant in evaporator

NANYANG
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Refrigerators and Heat Pumps

Simplified:

Refrigerator or
Heat Pump

7
‘VHC(.I"

X7

efrigerated spa

17

Energy balance: Wyt in = Qn — Q1.

oo NANYANG
. TECHNOLOGICAL
W) UNIVERSITY

SINGAPORE




Coefficient of Performance

» Efficiency of refrigerators and heat pumps is expressed in terms

of coefficient of performance
Desired output

Required input

Coefficient of Performance =

* Formula depends on the function of the machine:

‘Warm environmen

Desired

Required
input

NANYANG
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Coefficient of Performance —
Refrigerator

Desired output

Coefficient of Performance = : :
Required input

Function of a refrigerator is to cool the refrigerated
space:

input
dL
COPR =
. Wnet,in
Energy balance: Wyerin = Qp — Q1 Desired
1
COPg = @ _ . \
Qu—0Q, Qu/Q,—1 ~ Cold refrigerated

space at 7

NANYANG
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Coefficient of Performance — Heat
Pump

Desired output

Coefficient of Performance = : :
Required input

Function of a heat pump is to warm the
heated space:

Qu
Wnet,in

Desired
output

COPHP —_

W

nctin

Energy balance: Wietin = Qg — Oy Required

input

& _ 1
0n— Q. 1-0Qu/Qu

COPHP —

For the same QH & Q[_, COPHP = COPR+1

oo NANYANG
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Example 2 — Heating a House with a
Heat Pump

A heat pump is used to meet the heating
requirements of a house and maintain it at
20°C. On a day when the outdoor air
temperature drops to —2°C, the house is
estimated to lose heat at a rate of 80,000
kd/h. If the heat pump under these conditions
has a COP of 2.5, determine the power
consumed by the heat pump and the rate at
which heat is absorbed from the cold outdoor
air.

Assumptions:
Steady-state operating conditions

begcge] NANYANG
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Example 2 — Heating a House with a

Heat Pump

Heat pump delivers the same rate of heat as
the heat loss of the house to maintain the

indoor temperature:

Qy = 80,000k]/h

Qn
COPyp =
HP Wnet,in
- Qn
Wnet,in — COPyp
80,000 k] /h
=—— = 32,000k]/h

QL = QH - Wnet,in
= 80,000 — 32,000 = 48,000k]/h

22

~ Heatloss
& 20.000 kl/h

/ - y
nclin -
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2"d | aw of Thermodynamics —
Clausius Statement

« Heat is never transferred from a cold medium
to a warmer one in nature

* Impossible to have a working refrigerator/heat
pump that requires no power input

Warm environment

W =0

4
nctan

Clausius Statement:

It is impossible to construct a device that
operates in a cycle and produces no effect other
than the transfer of heat from a lower-temperature
body to a higher-temperature body.
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< | TECHNOLOGICAL
}m UNIVERSITY

” SINGAPORE




Equivalence of the Two Statements

» Kelvin-Planck statement and the Clausius statement are
equivalent

* Any device that contradicts either statement, would contradict
the other statement as well

Refrigerator

powered by

100% efficient Equivalent
heat engine refrigerator

Contradiction of
Kelvin-Planck
statement

Contradiction of
Clausius statement

NANYANG
TECHNOLOGICAL
UNIVERSITY
SINGAPORE

/)

LOW-temperature reserva

DW-lemperature reservo
at 7,
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Perpetual Motion Machines (PMM)

« A device that contradicts either the 1st law or 2" |aw of
thermodynamics

— Contradiction of the 15t law: perpetual motion machine of the first
kind (PMM1)

Wt out
System boundary A A

PMMA1: Boiler _
| |il 1
b

Resistance heater

b L ' y
117 / L 'L
EEEER == || L
3 U} L
o — i
Condenser Generator

[(]r——ryy;

¥ o

NANYANG
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Perpetual Motion Machines (PMM)

e A device that violates either the 1st law or 29 law of
thermodynamics

— Contradiction of the 2"d law: perpetual motion machine of the
second kind (PMM2)

System boundary Qm

PMM2: /

W

nctout

NANYANG
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Reversible & Irreversible Processes

Recall: 2" |law can determine the theoretical limits for performance
of engineering systems/processes

Consider a pendulum:

Process in which there is continuous conversion between potential
and kinetic energy of the mass

What is its theoretical limit?

begcge] NANYANG
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Reversible & Irreversible Processes

An ideal pendulum would be a frictionless pendulum
— 'Perfect’ conversion between kinetic and potential energy

» Areversible process is defined as one which can be reversed
without leaving any trace on the surroundings

— The state of the system & surroundings can be reverted to initial
states at the end of the reverse process

— Theoretical/ideal process

 Anirreversible process is the opposite of a reversible process
— Characteristic of all processes in nature

* Reversible processes deliver the most and consume the least
work

— Serve as the theoretical limit for its corresponding irreversible
process

— Easy to analyse P NECHNOLOGICAL

\~,‘\ UNIVERSITY
"~ SINGAPORE
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Reversible & Irreversible Processes

» Reversible processes are idealizations
of actual processes

» Actual devices/systems can be
approximated as reversible processes
at best

* Actual processes are compared
against their corresponding
idealized/reversible processes to
determine its efficiency

29

Expansion
Pressure —
distribution

Water

>

L

Water

Compression

il

L

(a) Slow (reversible) process

Expansion

Water Ié

Water

Compression
«

(b) Fast (irreversible) process

TECHNOLOGICAL
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Irreversibilities

Factors that cause a process to be irreversible
— Friction

Friction

— Heat transfer across finite temperature difference

— Mixing of two fluids

— Unrestrained expansion

— Electrical resistance

— Inelastic deformation of solids
— Chemical reaction

Presence of any one factor would cause the process to be
irreversible

opesey NANYANG
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Irreversibilities

Héét tranéfér across
finite temp. difference

e el A

i Impossible reverse process

(a) Fast compression

(b) Fast expansion

(¢) Unrestrained expansion

NANYANG
TECHNOLOGICAL
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Internally & Externally Reversible
Processes

« Internally reversible: if no irreversibilities occur within the

system boundaries (red box)

- Externally reversible: if no irreversibilities occur outside the

system boundaries (blue box)

« Totally reversible: internally + externally reversible; i.e. no

irreversibilities within the system or surroundings (magenta box)

| |
I |
| No |
| irreversibilities I
| outside |
| the system No |
| I
| |
| |
I |
| |

- irreversibilities
inside
the system

begcge] NANYANG
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Internally & Externally Reversible

Processes

« Example of internally reversible process: boiling of a fluid
(constant temperature & pressure process)

Heat

Thermal energy
reservoir at 20.000...1°C

(a) Totally reversible

AT = 20.00...1 — 20
= 0.000 ... 1°C
2 ~ 0°C

Boundary
at 20°C

" Heat

Thermal energy
reservoir at 30°C

(b) Internally reversible

AT = 10°C

NANYANG
TECHNOLOGICAL
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Carnot Cycle

* Proposed by French engineer Sadi Carnot in 1824
 Theoretical cycle

» Consists of 4 reversible processes:
— 2 isothermal processes
— 2 adiabatic processes
» Applicable to closed systems or steady flow systems

« Sets the theoretical limits for heat engines, refrigerators and
heat pumps

bogctod NANYANG
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Carnot Cycle

a) Reversible Isothermal Expansion (1 -2, T,, = const.)
— Gas expands at constant temp. while absorbing heat from energy

source

(1)—(2)

Energy

source

at TH

(a) Process 1-2

b) Reversible Adiabatic Expansion (2 — 3, T, dropsto T,)
— Gas does work on surroundings and expands while its temp. drops

(2)—>»(3)

Insulation

)
(b) Process 2-3 S—
-| TECHNOLOGICAL

2= UNIVERSITY

*Y SINGAPORE
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Carnot Cycle

c) Reversible Isothermal Compression (3 —4, T, = const.)
— Gas compression at constant temp. while losing heat to energy sink

(4) «—(3)

(¢) Process 3-4

d) Reversible Adiabatic Compression (4 — 1, T, rises to T,)

— Work done on gas to compress it and its temp. rises
(1) «—(4)

Insulation

(d) Process 4-1

oo NANYANG
TECHNOLOGICAL
%=/ UNIVERSITY

? SINGAPORE
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Carnot Cycle — PV Diagram

P A

(a) Process 1-2 (¢) Process 3-4

(2)—(3) (1) «—(4)

Insulation

Insulation

NANYANG
TECHNOLOGICAL
UNIVERSITY

’ SINGAPORE
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Reversed Carnot Cycle

 The Carnot cycle is a totally reversible cycle
« A reversed Carnot cycle becomes the Carnot refrigeration cycle

Carnot heat-engine cycle Reversed Carnot heat-engine cycle
Carnot refrigeration cycle

TECHNOLOGICAL
%=/ UNIVERSITY

? SINGAPORE
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Carnot Principles

1. The efficiency of an irreversible heat >
engine is always less than the High-temperature rescrval
efficiency of a reversible one
operating between the same two
reservoirs.

Nth1irrev < Nth2rev

2. The efficiencies of all reversible heat
engines operating between the

same two reservoirs are the same. Low-tcmpc:trurc reservoir
L

Nth,2,rev = Nth,3,rev

NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE
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Proof of Carnot Principles — Part 1

« Assume a violation of the
principles such that:

gh-temperature reservo
at 7| H

nth,irrev > 77th,rev

* The output work from an
irreversible HE would be higher
than a reversible HE in this case:

VViI’I‘eV > VVI’GV

« The heat rejected for an Cuirrev

irreversible HE would
consequently lower than a
reversible HE:

QL,irreV < QL,reV

ow-temperature reservoir
at T L

NANYANG
TECHNOLOGICAL
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Proof of Carnot Principles — Part 1

 Reverse the reversible HE, power the reversible R with the HE:

Equivalent machine that violates
the Kelvin-Planck statement!

QL,irrev

Low-temperature reservoj

Low-temperature reservoi a7y

at 7y

NANYANG
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UNIVERSITY

SINGAPORE




Proof of Carnot Principles — Part 2

« Assume a violation of the
principles such that:

gh-temperature reservo
at 7| H

77th,rev,1 > 77th,rev,2

* The output work from reversible
HE 1 would be higher than
reversible HE 2:

Wrev,l > Wrev,z

QL,rev,l QL,reV,l

« The heat rejected for reversible
HE 1 would then be lower than
reversible HE 2:

ow-temperature reservoir
at T L

QL,reV,l < QL,reV,Z

NANYANG
TECHNOLOGICAL
UNIVERSITY
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Proof of Carnot Principles — Part 2

 Reverse HE 2, power it with HE 1:

Equivalent machine that violates
the Kelvin-Planck statement!

QL,reV,Z — QL,reV,l

QL,reV,l QL,reV,Z

v-temperature reser

at 7y
Low-temperature reservo

at 7y

NANYANG
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Thermodynamic Temperature Scale

» A temperature scale that is independent of the properties of
substances that are used to measure temperature is called a
thermodynamic temperature scale

« Offers great convenience for thermodynamic calculations

» Recall the Carnot principle: all reversible heat engines operating
between the same two reservoirs have the same efficiency.

 Thermal reservoirs are characterized only by their temperatures

« Thermal efficiencies of reversible heat engines can be
expressed as a function of reservoir temperatures

begcge] NANYANG
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Thermodynamic Temperature Scale

— Derivation

« Thermal efficiencies of rev. HE is a
function of temperature only:

hermal energy reserve
8(T|

Q
Nth,rev = g(THr TL) =1- Q_L
H
QL Qn
—»— or —=f(Ty,T.) ’
QH QL f S 2
* For the three heat engines:
Q
_1 = f(Tli TZ)
Q2
Q Q3
== f(T2,T5) ‘
Q3 hermal energy reservi
Q at T3
<L = f(Tli TB)
Q3

Q,

oo NANYANG

TECHNOLOGICAL

S UNIVERSITY

SINGAPORE



Thermodynamic Temperature Scale
— Derivation

 Let's consider:

L0 @

Qs Q2 Q3
(T T3) = f(Ty,Ty) - f(Ty,T3)

 Product of functions on RHS must cause
the T, term to disappear

* Only possible if function f'is of the form:
_¢(Ty) _ ¢(T)
FIuT) =gy 0T = o
T
N f(leTg) _ (p( 1) . Ql

- P(T3) Q3

oo NANYANG

TECHNOLOGICAL
="/ UNIVERSITY

SINGAPORE
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Thermodynamic Temperature Scale
— Derivation

 Therefore, for a reversible HE:
(@) _ ¢
)., o)

* Lord Kelvin thus propose and define:

¢(T) =T

* The thermodynamic temperature scale
is therefore defined as:

(@) _Tu
). 1L
Note: Qn # Ty
QL # T,

oo NANYANG
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Thermodynamic Temperature Scale

« This temperature scale is called the
Kelvin scale

 Temperatures on this scale are called
absolute temperatures

T(K) = T(°C) + 273.15

« Magnitudes of temperature units on the
Kelvin and Celsius scales are the same:

1K= 1°C

igh-temperature resery

at TH= 1000 K

at T, =300K

&

NANYANG
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Carnot Heat Engines

Hypothetical heat engine operating on the Carnot cycle
Most efficient (ideal) heat engine

Recall that the thermal efficiency of any heat engine is:

AL
-1 —-==
eh Qu

From the thermodynamic temperature scale,
@)% v @)%
QL rev TL QH rev TH

Thermal efficiency of a Carnot heat engine:

T
Nenrev = 1 — T—L (Carnot efficiency)
H

Absolute temperatures only! A e CHNOLOGICAL
‘;1\; UNIVERSITY
” SINGAPORE




Carnot Heat Engines

at?},::l(l])](

Low-temperature reservoir
at T, = 300 K

' at1;_-303l(

 Efficiency increases with
source temperature
* Energy has higher quality

at higher temperatures.

FET NANYANG
TECHNOLOGICAL
UNIVERSITY
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< My irreversible heat engine
My = My reversible heat engine
> My impossible heat engine
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Carnot Refrigerators & Heat Pumps

» A device that operates on the reversed Carnot cycle

» Recall that the coefficient of performance for any refrigerator or
heat pump are:

1 1
COP, = & COPyp =
R 0u/0, -1 AP 71— Q./0u

» Coefficient of performance for a Carnot refrigerator:

1
Ty /T, — 1

COPR,rev —

» Coefficient of performance for a Carnot heat pump:
1
1—-T,/Ty

COPHP,I‘CV —

begcge] NANYANG
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Carnot Refrigerators & Heat Pumps

Cool refrigerated space
aT = 275K

< COPy,.. irreversible refrigerator

COPg{ = COPg,, reversible refrigerator Sanlvetp rZwllz les
> COPg,., impossible refrigerator apply to neat pumps
FEEE] NANYANG
TECHNOLOGICAL
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Example 3: Analysis of a Carnot Heat

Engine

A Carnot heat engine receives 500 kJ of heat per cycle from a high-
temperature source at 652°C and rejects heat to a low-temperature
sink at 30°C. Determine the thermal efficiency of this Carnot engine

and the amount of heat rejected to the sink per cycle.

QL TL
Nth,rev =1_(Q_ =1_T_
H/ rev H

(30 + 273)K

=1- = 0.672
(652 + 273)K

(&) _n
Qn rev Ty
Ty,

QL,reV = T_ : QH,reV
H

~ (30+273)K
~ (652 + 273)K

(500K]) = 164 K]

53

ligh-temperature reserw
at T, = 652°C

Carnot ¥

DW-temperature reservi
at 7; = 30°C
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Summary

* Processes can only proceed in one direction and satisfy both the 15t
and 2" Laws of Thermodynamics

« Thermal energy reservoirs can absorb/supply finite amounts of heat
without any change in temperature
« Two classes of cyclic devices that operate between T, and T, thermal
energy reservoirs:
— Heat engines that produce work output

— Refrigerators absorb heat from T, reservoirs and heat pumps supply heat to
T, reservoirs, both require work input

- Thermal efficiency of a heat engine: —1q QL
p=1—-==
t Qu
« Coefficients of performance (refrigerators & heat pumps):
1 1
COPg = COPyp =

Qu/QL—1 1-0Q./Qn

Lot NANYANG
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k) UNIVERSITY

7 SINGAPORE




Summary

* Reversible processes are ideal processes that can be reversed
and are the most efficient

» Actual processes are irreversible due to the presence of
irreversibilities

« The Carnot cycle is a reversible cycle that possess the best
possible efficiency which is dependentonlyon T, ,and T,

* The thermodynamic temperature scale is derived from the

Carnot principles

. QL I

« For areversible Carnot cycle: |— = —
QH rev TH

« Carnot efficiency for heat engines:  Mtnrev =1 — 7

« Coefficients of performance for reversed Carnot cycle:
1

1-T,/Tnu

COPy Prev —

Lot NANYANG
< | TECHNOLOGICAL
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