

MA3001 CA2 Belt Pulley Selection July 2023

Machine Element Design (Nanyang Technological University)

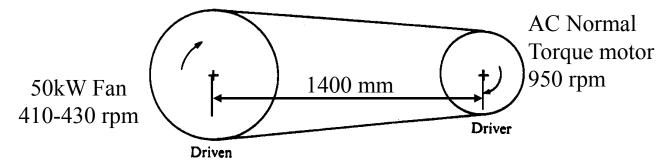
Scan to open on Studocu

MA3001 CA2 Individual Assignment Belt Pulley Selection

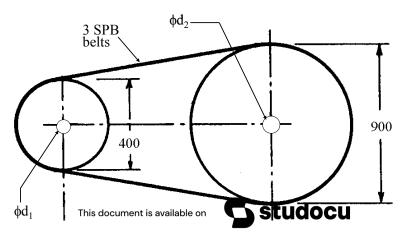
Objective: to familiarise students with using catalogue to select pulleys and to present dimensioned drawings (scaled drawings are not required).

Task: You are to select the appropriate pulleys for the belt drive in Example 1 of the Lecture Notes on Belt Drives. To determine the shaft diameters, it is assumed that all other forces are negligible except for the torque acting on the shafts. The allowable shear stress in the shafts carrying the pulleys is assumed to be 40 MPa. In reality, a shaft can be subjected to a combination of torques, bending moments, lateral forces and axial forces. The accompanying course pulley catalogue allows for selection of taper lock bushes for the shaft.

You are to:


- 1. show the full analysis and the selection of the taper lock pulleys and taper lock bushes using the course catalogue (taper lock pulleys).
- 2. make a dimensioned sketch (not necessary to scale) of the two sheaves with the assembled bushes

Note: in reality and for the design project, you can also select pulleys from other commercial catalogues that do not use detachable bushes or pre-manufactured bores and keyways. You can specify your customized bore diameters and keyways.


Requirements: Individual submission at the end of the session.

EXAMPLE 1 (covered in lecture)

Design a V-belt drive to transmit 50 kW. Driver sheave speed is 950 rpm and driven sheave speed is 410-430 rpm. Power will be supplied by an AC normal torque motor; the driven unit is a fan which will be operated about 12 hours per day. The centre distance is approximately 1400 mm.

Solution: 3 SPB belt, L = 5000 mm, $D_1 = 400 \text{ mm}$, $D_2 = 900 \text{ mm}$ $d_1 \& d_2$ are bore diameters (same diameters as shafts)

Downloaded by Angie Low (singaporeangie1@gmail.com)

Lau Zi Yang MA1

1. Torque experienced by each shuff
$$W_1 = \frac{950 \times 27}{60} = 99.48 \text{ rad/s} \Rightarrow T_1 = \frac{P}{W_1} = \frac{50 \text{ abo}}{99.48} = 502.61 \text{ Nm}$$

$$P = TW$$

$$W_2 = \frac{410 \times 77}{60} = 42.43 \text{ rad/s}$$

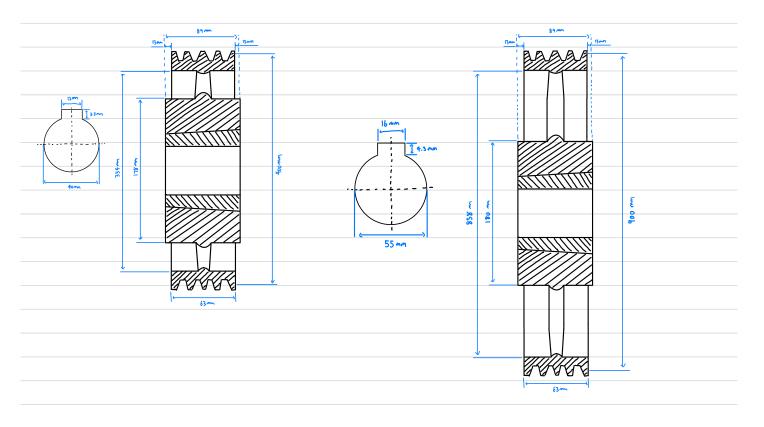
$$W_3 = \frac{430 \times 27}{60} = 45.03 \text{ rad/s}$$

$$W_4 = \frac{50 \text{ abo}}{42.93} = 1164.68 \text{ Nm}$$

$$W_5 = \frac{50 \text{ abo}}{42.93} = 1110.37 \text{ Nm}$$

2. Given allowable show stress = 40 Mpa
$$\Gamma_1 = \sqrt[3]{\frac{2(502.61)}{40 \times 10^4 \times 77}}$$
 $\Gamma_2 = \sqrt[3]{\frac{2(1164.68)}{40 \times 10^4 \times 77}}$ $\Gamma_3 = \sqrt[3]{\frac{2(1164.68)}{40 \times 10^4 \times 77}}$ $\Gamma_4 = \sqrt[3]{\frac{2}{100}}$ $\Gamma_5 = \sqrt[3]{\frac{2}{100}}$ $\Gamma_7 = \sqrt[3]{\frac{2}{100}}$ $\Gamma_8 = \sqrt[3]{\frac{2}{100}}$ Γ

3. From Cotalogue SPB, dr = 40mm, Dm = 400mm
for 3 betts, => Bush no. = 3535 / Using Figure.7
Ls From bushes apporting, for 40mm


Lo leyway wilth = 12 mm , depth = 3.3 mm

From Catalogue SPB, dz = 52mm, Dm = 900mm

for 3 belts, => Bush no. = 3535 / using Figure.7

Is From bushes approfix, for 35mm

Ls Keyway width = 16 mm, depth = 4.3 mm

