NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 2 EXAMINATION 2022-2023

MA2024 - ENGINEERING MATERIALS AND MANUFACTURING PROCESSES

April/May	2023					Т	ime Allov	wed: 2½ ho	ours
Seat No.:									
Matriculat	tion No.:		·.						
INSTRU	CTIONS								
	question pages.	and answe	r booklet	contains S	IX (6) que	estions and	d compris	es FOURT	EEN

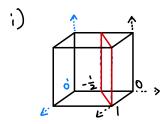
- 2. Answer **ALL** questions.
- 3. Marks for each question are as indicated.
- 4. All your answers should be contained in this answer booklet and within the space provided after the question.
- 5. This is a **RESTRICTED-OPEN BOOK** examination. One double-sided A4-size reference sheet with texts handwritten or typed on the A4 paper (no sticky notes/post-it notes on the reference sheet) is allowed.

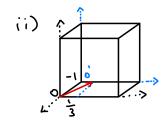
For examiners:

Questions	1	2	3	4	5	6	Total
	(15)	(20)	(15)	(16)	(18)	(16)	(100)
Marks							
			,				

Q1. (15 marks)

/15

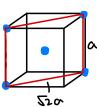

Crystallinity of solids


(a) Draw the following plane and direction in cubic unit cells.

(6 marks)

- $(1\bar{2}0)$ plane = 1, $-\frac{1}{2}$, 0 (i)
- $[\overline{3}10]$ direction = -1, $\frac{1}{3}$, 0

Solution:



(b) Calculate the planar density of (110) plane in tungsten, which is BCC structure with atomic radius of 0.210 nm.

(3 marks)

Solution:

Area=
$$(52\alpha)(\alpha)$$

 $\alpha = \frac{4r}{3}$
Area= $52 \cdot (\frac{4r}{3})^2$

$$N = 2$$
Area = ($\sqrt{12}$ a)(a)
$$A = \frac{4r}{\sqrt{3}}$$

$$A = \sqrt{\frac{4r}{3}}$$

$$= \sqrt{2 \cdot (6r^{2})^{2}}$$

$$= \sqrt{\frac{12 \cdot (6r^{2})^{2}}{3}}$$

Note: Question 1 continues on page 3.

(c) Calculate the atomic packing factor of an FCC unit cell.

(3 marks)

Solution:

APF =
$$\frac{n \times Vol. \ artom}{Vol. \ unit \ (ell)}$$

F(c: $\alpha = 2J2r$
 $Vol. = \alpha^3 = (2J2r)^3$
 $= 16J2r^3$
 $M = (6(2) + 8(8) = 4$

APF = $\frac{4 \times \frac{4}{3} \pi r^3}{16J2r^3}$
 $= \frac{\pi}{3J2} = 0.74$

n=4

(d) Calculate the theoretical density of copper. Copper is FCC structure, with atomic radius of 0.128 nm and atomic weight of 63.546 g/mol. Avogadro's number is 6.023 x 10²³ atoms/mol.

(3 marks)

$$P = \frac{N \times A_{W}}{N_{A} \times V_{c}}$$

$$= \frac{4 \times 63.576}{6.023 \times (0^{23} \times (252 (0.128 \times 10^{-7}))^{3}}$$

$$= 8.89 g (cm^{3})$$

Q2.(20 marks)

/20

(5 Marks)

(a) Refer to the phase Cu-Ag phase diagram in Figure 1. The composition of a Cu-50%-Ag alloy was cooled from 1000°C to room temperature.

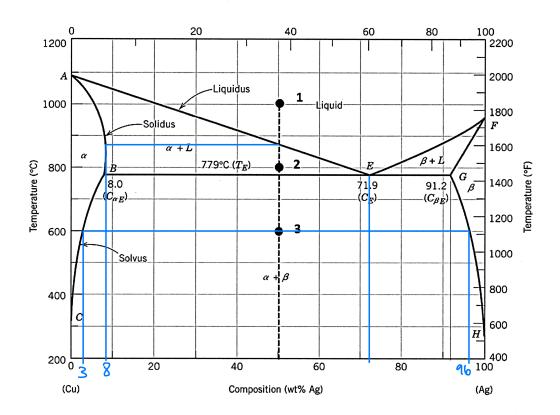
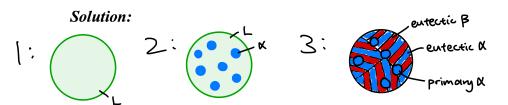



Figure 1

(i) Draw the microstructures of the alloy at point 1 (1000 °C), 2 (800 °C), and 3 (600 °C).

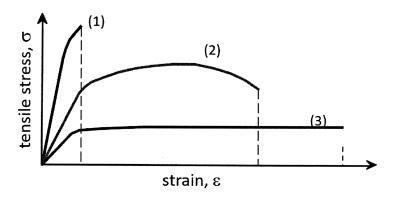
Note: Question 2 continues on page 5.

(ii) Find the composition of the first formed solid phase. Also, find the composition of the last remaining liquid phase.

(5 Marks)

Solution:

(iii) Determine the mass fraction of primary α , eutectic α , and eutectic β at 600°C. (10 Marks)


Q3. (15 Marks)

/15

Mechanical Properties of metals.

(a) Figure 2 shows the stress-strain curve of 3 different engineering materials. Fill in the ranks in the table 1 of the following properties among the three materials.

(5 Marks)

Solution:

Figure 2

Table 1

0						
gradient of linear slope	Property			Rank		
	Young's modulus	1	>	2	>	3
max. point of lineatslope	_	(>	2	>	3
of curve	Tensile strength	()	>	2	>	3
plastic postion		3	>	2	>	(
area under	Toughness	2	>	3	>	1

(b) Explain the following statement in your own words regarding the strength of a metal. "A perfect material, namely a perfectly pure crystal without defects in structure is perfectly useless."

(5 Marks)

Solution:

Defects such as dislocations, grain boundaries, Strengthens the material. Without these, the material will not have the appropriate mechanical properties for practical use.

Note: Question 3 continues on page 7.

(c) Using Figure 3 and Hall-Patch Relation, estimate the yield strength of the material if it is nanostructured with a grain size of 50 nm.

(5 Marks)

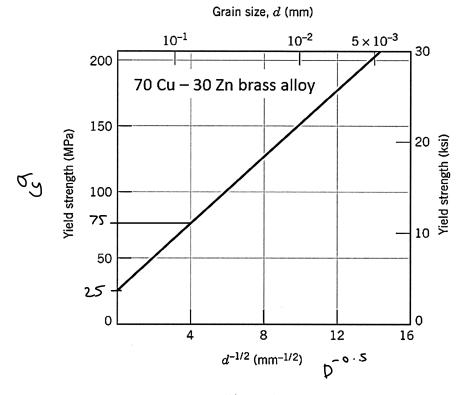


Figure 3

Ornalisent
$$\approx \frac{75-25}{4-0} = 12.5$$

Oy = .00 + kD

interept when oy 10 = 0

 $\approx 25MPa$
 $\approx 25MPa$
 $\Rightarrow 0$
 $\Rightarrow 1.792 GPa$

Q4. (16 marks)

/16

This question relates to metal casting.

(a) A rectangular piece of dimensions $30\times50\times20$ cm³ is fabricated using sand casting and has a solidification time of 20 min. We add a cylindrical riser of diameter 5 cm and length 8 cm for this rectangular piece. What is the total solidification time of the riser? The total solidification time T is given by the Chvorinov's rule: $T = C_m \left(\frac{v}{A}\right)^2$, where C_m is the mold constant, and V and A the volume and area of the cast, respectively.

(3 marks)

Solution:

$$T = C_{m} \left(\frac{V}{A}\right)^{2}$$

$$20 = C_{m} \left(\frac{2(30 \times 50) + 2(30 \times 20) + 2(50 \times 20)}{2(30 \times 50) + 2(50 \times 20)}\right)$$

$$C_{m} = 0.854 \left(\frac{\pi(5)^{2} \times 8}{4 \times 10^{2} \times 10^{2}}\right)^{2} = 0.7746 \text{min}$$

$$T_{riper} = 0.854 \left(\frac{\pi(5)^{2} \times 8}{2(\pi(5)^{2}) + \pi(5)(8)}\right)^{2} = 0.7746 \text{min}$$

(b) Is this a suitable riser? Justify your answer.

(1 mark)

Solution:

(c) We now want to modify the riser's geometry so that its solidification time is of 30 min. We decide to keep a cylindrical riser of length at 8 cm but to vary its diameter. What should be the new riser diameter to have a solidification time of 30 min?

$$A = \frac{\pi d^2}{4}$$
 (2 marks)

Solution:

$$\frac{8A}{2A+9\pi d} = .5.927$$

$$2\pi d^{2} = 5.927(\frac{1}{2})(\pi d^{2}) + 5.0127(.8)\pi d^{2}$$

$$3.027d = -148.06$$

X Not possible as -ve

Note: Question 4 continues on page 9.

(1 mark)

(2 marks)

(d) Is this a suitable riser? Justify your answer.

Solution:

No. The height is significantly smaller than the required.

(e) Finally, we decide to make a riser with a ratio D/L = 1. What would in this case be the dimensions of the riser to have a solidification time of 30 min?

Solution:

$$\frac{P}{20} = 1 \rightarrow D = 1$$

$$\frac{\pi D^{3}}{4}$$

$$\frac{\pi D^{3}}{2(\pi Q^{2}) + \pi D^{3}}$$

$$\frac{1}{2} = 0.854 \left(\frac{D}{6}\right)^{2}$$

$$D = 35.56 \text{ cm} = 1$$

(f) If the dimensions of the cast part were 30×50×20 mm³ instead of 30×50×20 cm³ but with the same casting time, what would be the dimensions of the riser with a ratio D/L = 1?Cm=0.854min/mm2

Solution:

(g) Would sand casting be a suitable method for fabricating this piece of dimensions 30×50×20 mm³? What other method can you propose and explain why.

(2 marks)

(2 marks)

Solution:

Note: Question 4 continues on page 10.

(h) After sand casting, the piece has a rough surface. Using a stylus apparatus, the vertical deviations are measured and reported in the below table 2. Based on this data, what is the surface roughness Ra of the piece?

(2 marks)

<u>Table 2: Vertical deviations measured using the stylus apparatus</u>

Measurement number	Vertical deviation in
	$\mu_{\mathbf{m}}$
1	+100
2	+50
3	-10
4	+3
5	-80
6	-65
7	+46
8	-82
9	+4
10	+6

Solution:

(i) Considering the other process you proposed in question (g), do you expect this other process to produce a piece with a higher or lower surface roughness? If you had proposed several methods, please select only one.

(1 mark)

Q5. (18 marks)

/18

Figure 4 shows a 2-D orthogonal cutting (OC) process with the various cutting parameters.

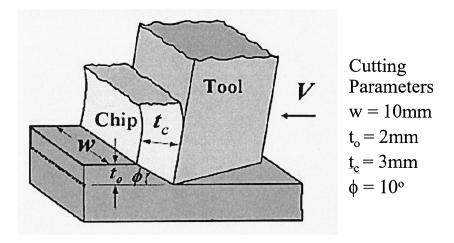


Figure 4 A schematic diagram of an orthogonal cutting process

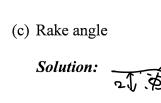
Determine the following:

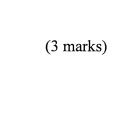
(a) What is a relief angle? What function does it serve? What happens when the relief angle is not properly controlled?

(4 marks)

Solution: Angle bertnern tool & workpiece.

It affects cutting force & chip formation.


If not properly controlled, cutting force increased, many


(b) Cutting ratio have BUE, reduce tool life.

(2 marks)

Solution:

Note: Question 5 continues on page 12.

(d) Given the chip velocity is 10 m/min, determine the material removal rate.

$$\sim$$
 (0 000/60 \sim \sim / ς (5 marks)

Solution:

(e) Cutting power required for the OC process on all these materials listed in Table 3. (4 marks)

Table 3 Specific energy requirements of various materials

Material	Specific Energy Requirements, J/mm ³				
Aluminium alloys	0.7				
High temperature alloys	5.9				
Nickel alloys	5.5				
Stainless steels	4.1				

Q6. (16 marks)

/16

(a) (i) Briefing discuss what is fusion and solid state welding in terms of the application of heat and pressure as well as filler.

(3 marks)

Solution:

Laser beam welding (LBW) and electron beam welding (EBW) are fusion welding processes having very high-power densities. Name two merits for the use of EBW over LBW.

(4 marks)

Solution:

(iii) A laser beam heat source is capable of transferring 3500J/sec to a metal part surface. 80% of the heat is concentrated in a circular area used to melt the metal. The minimum power density to melt the metal is given as 10W/mm². What is the maximum diameter where melting of the metal can occur?

(3 marks)

$$0 = \frac{(0.8)(3500)}{4}$$

(b) A desired deep drawing process is to be performed on a blank sheet metal. The drawn part is a cylindrical cup of 50mm height with inside diameter of 70mm. Determine the required starting blank size D_b and thickness of the sheet metal, t.

Solution:

(6 marks)

70 mm

Initial blank volume=Final cup volume $\frac{TDb^{2}}{4} \times t = \frac{T(Dp+2t)^{2}}{4} \times t + TDp hxt$

END OF PAPER

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

MA2024 ENGINEERING MATERIALS & MANUFACTURING PROCESSES

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.