NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2022-2023

MA2024 – ENGINEERING MATERIALS AND MANUFACTURING PROCESSES

November/December 2022							Т	ime Allowed	l: 2½ hours
Seat	t No.:				٦ .				
Mat	ricula	tion No.:							
<u>INS</u> 1.	This	CTIONS question ELVE (12		nswer boo	oklet con	tains SIX	(6) qu	estions and	l comprises
2.		•	, , ,	swer ALL	questions				
3.	Mar	ks for eac	h question	are as ind	icated.				
4.		our answ the quest		be contain	ed in this	answer boo	klet and	within the sp	ace provided
5.	refe	rence shee	et with tex		tten or typ			double-side (no sticky n	

For examiners:

Questions	1	2	3	4	5	6	Total
	(17)	(13)	(20)	(14)	(18)	(18)	(100)
Marks							
		,					

Q1. (17 marks) (a) Draw within a unit cell the following: (i) (3 21)

Solution: (3 marks)

(ii) [3 **2 3**]

Solution: (3 marks)

(b) Calculate the planar density of $(0\ \overline{2}\ 0)$ for iron (atomic radius = 0.124 nm). (4 marks) **Solution:**

Note: Question 1 continues on page 3.

(c)	Determine number	of atoms present in	ı 10 grams of gold bar.	The lattice parameter of
	gold is 0.4065 nm.	Density of gold is	19.30 g/cm ³ . Avagadro	's number, NA is 6.023 x
	10^{23} atoms/mol.			

(4 marks)

Solution:

(d) Estimate the number of vacancies in the 10 grams of gold at room temperature (27 °C). The activation energy for vacancy formation in gold is 1.01 eV/atom. Boltzmann's constant = 8.62×10^{-5} eV/atom-K.

(3 marks)

Q2. (13 marks)

/13

(a) Based on the data given below, WHICH TWO element combination will form an isomorphous phase diagram and WHY?

(4	marks)
----	--------

Element	Atomic	Crystal	Electronegativity	Valence
	Radius	Structure		
	(nm)			
Copper (Cu)	0.1278	FCC	1.9	+2
Cobalt (Co)	0.1253	HCP	1.8	+2
Iron (Fe)	0.1241	BCC	1.8	+2
Aluminium	0.1431	FCC	1.5	+3
(Al)				
Nickel (Ni)	0.1246	FCC	1.8	+2

Solution:

(b) Label the different phase fields that are on the equilibrium phase diagram for the Cu-Ag binary system displayed below.

(3 marks)

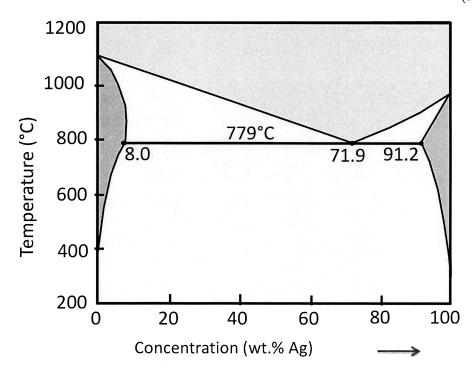


Figure 1

Note: Question 2 continues on page 5.

	(3 mar
Solution:	(
(d) Draw a schematic diagram of the alloy with 60 wt.% Cu.	microstructure (with different phases labelled) of
~ .	(3 mar)
Solution:	
(20 marks)	
(20 marks)	/2
(a) A 20 mm long steel wire (Your	ng's modulus = 200 GPa) with 2 mm diameter v 2 kN. What is the elastic strain energy stored in
(a) A 20 mm long steel wire (Your stretched by applying a force of	g's modulus = 200 GPa) with 2 mm diameter v

(b) In the plastic deformation regime of a ductile metal that is being tensile tested, application of the engineering stresses of 800 and 1000 MPa result in engineering strains of 0.1 and 0.2, respectively. Compute the work hardening exponent of the metal.

(5 marks)

Solution:

Note: Question 3 continues on page 6.

(c)	The tensile yield strength of a single crystal of gold is 50 MPa. If the critical resolved
	shear stress for gold on (111) plane, which is oriented at angle of 30° to the tensile axis
	is 21.65 MPa, calculate the angle that the $[10\overline{1}]$ direction, along which slip occurs
	makes with the loading axis.

(5 marks)

Solution:

(d) The yield strengths of a steel with the grain sizes of 3.24 μm and 400 μm are 1 GPa and 636 MPa, respectively. What would be the yield strength of the same steel if the grain size of the steel was reduced to 810 nm?

(5 marks)

Q4. This question relates to overview of manufacturing and metal casting. (14 marks)

/14

(a) What is the definition of additive manufacturing? Is it the same as 3D printing? Give your reasons and give an example of additive manufacturing process.

(4 marks)

Solution:

(b) What is tolerance? How does tolerance affect functioning of a product and manufacturing cost of the product?

(3 marks)

Solution:

(c) A defect is found in a metal part produced by casting, as shown in Figure 2. What is the name of the defect? Suggest a method to avoid the defect.

(3 marks)



Figure 2

Solution:

Note: Question 4 continues on page 8.

(d) What is the definition of total solidification time (TST)? alloy is produced by casting. If its diameter is doubled, v of TST? You may assume the exponent <i>n</i> in Chvorinov'	what is the percentage increase
of 181. Tou may assume the exponent "in Chyofmov	(4 marks)
Solution:	(;)
Q5. This question relates to metal forming and metal machining	<i>ig.</i> (18 marks)
	/18
(a) Springback occurs during metal bending process. Make the phenomenon. What causes springback? Suggest a meaningback	
springback.	(4 marks)
Solution:	(Tildiks)
(b) Tearing is a common defect in deep drawing process. We Suggest a method to avoid the defect.	That is the cause for the defect.
	(3 marks)
Solution:	

Note: Question 5 continues on page 9.

(c) What is the difference between punching and blanking? A punch die is designed to punch a circular hole of 8 cm in diameter from a 1.2 mm thick steel sheet. If the steel has a shear strength of 380 MPa, determine the force required to perform the punch operation.

(5 marks)

Solution:

(d) If n is 0.5 in the Taylor equation for tool life:

$$V T^n = C$$

where V is cutting speed in m/min and T is tool life in min, what is the percentage increase in tool life if the cutting speed is reduced by 80%? How does the change in cutting speed influence the temperature in cutting? Give your reasons.

(6 marks)

Q6. This question relates to *metal joining*, *engineering polymers*, and *polymer forming*. (18 marks)

/18

(a) What is the name of the welding process shown in Figure 3? Which type of shielding gas can be used in the welding process? Give your reasons. What is the role played by the filler wire in the welding process?

(4 marks)

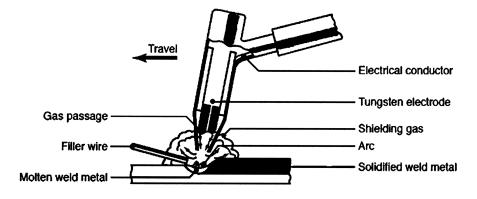


Figure 3

Solution:

Note: Question 6 continues on page 11.

(b) An arc welding operation takes place on high strength low alloy steel plates. Calculate the welding volume rate and the cross-sectional area of the weld if the following can be assumed: welding voltage, E=24~V, welding current, I=160~A, heat transfer efficiency, $f_1=0.7$, melting efficiency, $f_2=0.55$, welding speed, v=120~mm/min, and unit melting energy of the steel = 9.8 J/mm³.

(5 marks)

Solution:

(c) What does the term "glass-transition temperature" mean for a polymer? What are the two major structural factors affecting this material property?

(4 marks)

Note: Question 6 continues on page 12.

(d) What is the name of the manufacturing process shown in Figure 4? Describe the full manufacturing cycle.

(5 marks)

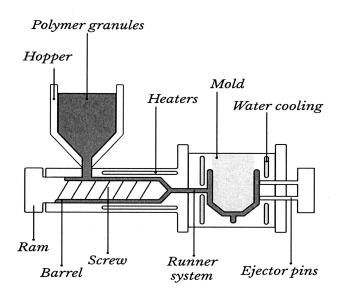


Figure 4

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

MA2024 ENGINEERING MATERIALS & MANUFACTURING PROCESSES

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.