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1 Definitions

1.1 Measurement system

A measurement system consists of 3 components, a transducer, a signal
processor and a recorder.

1.1.1 Transducer

A transducer is a device that usually converts a physical quality into a time-
varying voltage, called an analogue signal.

1.1.2 Signal processor

A signal processor is a device that can modify the analogue signal.

1.1.3 Recorder

A recorder is a device that displays or records the signal.

1.1.4 Input

The input in a measurement system is the physical quantity to be measured.

1.1.5 Output

The output in a measurement system is usually the output of the transducer
transforming the input into a form compatible with the processor to be
processed.

1.1.6 Difference

The difference in a measurement system is usually the difference in the input
from the output.

1.1.7 Characterisation

A good measurement system is characterised by:
e Phase linearity
e Amplitude linearity

e Adequate bandwidth



1.2 Amplitude linearity

Amplitude linearity refers to the output always being changed by the same
factor multiplied by the change in the input, i.e.

Vout (t) = Vout(0) = a(Vin(t) — Vin(0))
Where:
e V,,.(t) is the voltage output at time ¢
e V,,:(0) is the initial voltage output
e Vi, (t) is the voltage input at time ¢
e V;,(0) is the initial voltage input

e « is the constant of proportionality, or the scaling factor

1.2.1 Remarks

e It is difficult to interpret the output if there is no amplitude linearity.

e A measurement system usually satisfies amplitude linearity over a lim-
ited range of input amplitudes, like a spring.

e Linear response of a measurement system usually holds for a limited
range of the input rate.

e An ideal measurement system exhibits amplitude linearity for any in-
put amplitude and input rate.



1.2.2 Examples
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1.3 Period and frequency

T is the period in seconds, which is the inverse of frequency (f in Hz).

Amplitude

T 12 periods in 1 s — Frequencyis 12 Hz
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a. A signal with a frequency of 12 Hz

Amplitude
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b. A signal with a frequency of 6 Hz

1.4 Time and frequency domain

Below are the time-domain and frequency-domain plots of a sine wave.

Amplitude
4 Frequency: 6 Hz

Peak value: 5V
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a. A sine wave in the time domain (peak value: 5V, frequency: 6 Hz)
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b. The same sine wave in the frequency domain (peak value: 5V, frequency: 6 Hz)
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1.5 Magnitude ratio (M)

Magnitude ratio, which can be considered as the attenuation, is always less
than 1, and is given by:

Where:
e M is the magnitude ratio
e w is the angular frequency

e 7 is the time constant

1.6 Dynamic error (¢)

A dynamic error for a first order system is always less than 1, and is given
by:
d(w)=1- M(w)

Where:
e ) is the dynamic error

e M is magnitude ratio

1.7 Radicand

Radicand is the quantity inside the square root sign. For example, the
radicand of v/3 is 3, and the radicand of V22 + 2bx + b2 is 2 + 2bx + b2,

11



1.8 Common mode rejection ratio (CMRR)

1.9

Common mode rejection ratio (CMRR) is the ratio of the different
mode gain to the common mode gain.

The difference mode gain is the amplification factor for the difference
between the input signals.

The common mode gain is the amplification factor for the average of
the input signals.

For an ideal difference amplifier, the common mode gain is 0, implying
an infinite common mode rejection ratio.

It is desirable to minimise the common mode gain to suppress signals
such as noise that are common to both inputs.
Analogue-to-digital (A/D) conversion

An electronic integrated circuit which transforms a signal from ana-
logue (continuous) to digital (discrete) form.

Analogue signals are directly measurable quantities.

Digital signals only have two states. For the digital computer, we refer
to the binary states: 0 and 1.

1.10 Dithering

Dithering is a form of noise that is intentionally applied to randomise quan-

tisation error.

1.11 Transducers

Transducers convert one form of energy into another, and it is not necessary

to perform a measurement.

1.12 Sensors

Sensors produce an output signal, which is typically electrical, for the pur-
pose of sensing a physical phenomenon.

12



1.13 Sensor classification
e Analogue vs digital
— Light on and off switch vs light dimmer.
e Passive vs active

— Passive sensors do not require external an external power supply,
and they draw energy from the input signal itself.

e Null versus deflection type

— Null type sensors counteract any deflection due to the measured
quantity using an opposing calibrated force.

e Subject of measurement

— Mechanical, optical, thermal, etc.

1.14 Instrumentation systems

e Sensing module, which can be mechanical, thermal, optical, pyrolytic,
piezoelectric, etc.

e Conversion module to convert from analogue to digital.
e Pre-processing, which is a module that manipulates the variables.

e Data transmission, which can be wired or wireless, transferred over the
internet, etc.

e Presentation or storage to the user.

1.15 Input

Input is the stimulus. Some examples include temperature, pressure, and
strain.

1.16 Output

The output is usually an electrical signal, which is defined using voltage,
current, frequency, phase, etc.

13



1.17 Sensitivity (5)

The sensitivity is defined as:

_ Output variation
~ Input variation

It is also the slope of the graph of the output (f(z)) against the input ().

df
S=—
dx
1.18 Resolution
The resolution is the minimum change of the input that can be reliably
detected. It is limited by noise, bit-conversion, and many other things.

1.19 Accuracy

The accuracy is the difference of the measurement from the true value.

1.20 Repeatability

Repeatability is how well a system or device can reproduce an outcome in
unchanged conditions.

4

repeatability

® measurement \
x average \

O true value — _

low high

v

accuracy
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1.21 Types of instrument errors

1.21.1 Nonlinearity

actual
nonlinear

OUtpUt response

\ assumed

linear
response

[

input

1.21.2 Hysteresis

A

output

—p
Input
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1.21.3 Sensitivity error

output

v

~—
>
input
1.21.4 Zero-shift error
A
output

P /

v

~

>

input
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1.22 Lorentz’s law

| >  [F=8BILsino |
S~
=
e S~
//L \ > [ CONDUCTOR
AT AN ANGLE 6
5 / -~ | TO B FIELD
y S~
y = >
~
-~

F=(ixB)L
F =||F||BiLsin6
Where:
e [ is the magnetic force
e 7 is the current
e B is the magnetic field

e [ is the length of the wire

17



1.23 Faraday’s law

external B field
A

dd
—F=_"=
emf 7
@é/é@
>

Where:
e emf is the electromotive force
e ® is the magnetic flux
e Y is the surface whose boundary coincides with the coil

— It is not uniquely defined but div B = 0, which means the
integral only depends on the boundary.

18



2 Fourier series representation of signals

2.1

Any periodic signal can be represented by a combination of an infinite
number of sinusoid terms.

Easy and standardised way to deal with any periodic signals (simple
or complicated) using sine and cosine terms.

In addition to time domain analysis, frequency domain analysis helps to
gain insights of the signals which are fundamental to signal processing,
and other mechatronics applications.

To study bandwidth and phase linearity, which are applied to frequency
components of an input signal, it is necessary to review the Fourier
series representation of a signal.

Any periodical waveform can be represented as an infinite series of sine
and cosine waveforms of different amplitudes and frequencies.

Summing up this infinite series gives the original periodical waveform.

Practically, a finite number of the sine and cosine waveforms can ade-
quately represent a periodical waveform.

Fundamental frequency

Let wpy be the fundamental of first (lowest) harmonic frequency defined as:

21
wo = T :27Tf0

Where:

wp is the fundamental angular frequency
T is the period

fo is the fundamental frequency in Hz

The other sine and cosine waveforms have frequencies of integer multiples of

wo-

19



2.2 Fourier series representation of a periodical waveform
The Fourier series representation of a periodical waveform f(t) is:

F(t) = Co + Z Ay, cos(nwot) + Z B, sin(nwot)

n=1 n=1

Where:

e () is the DC component of the signal, i.e. the non-periodical part of
the waveform, given by:

1 [T A
CO_T/O Fleyde = 50

Where:
— T is the period
— f(t) is the periodical waveform
— t is the time
— Ay is the initial amplitude of the waveform
e A, is given by:
9 T
A, = / f(t) cos(nwot) dt
T Jo
Where:

— T is the period
— wy is the fundamental angular frequency

t is the time

— n is just a number
e B, is given by:
2 T
B, = / f(t) sin(nwot) dt
T Jo
Where:

— T is the period

— wo is the fundamental angular frequency

t is the time

— n is just a number

Note that Cj is the average value of the waveform over its period.

20



2.2.1 In general

Given:
Cn=+/A2 + B2
By,
¢n = — arctan <An>
Then:
F(t) =

Co+ Z (A, cos(nwot) + By, (sin nwot))

n=1

—00+Z\/A27<

\/1427 cos(nwot) + \/7 sin(nwot )
= Co+ Z Ch (cos(¢n) cos(nwot) — sin(¢y, ) sin(nwot))

n=1
=Cy+ Z C,, cos(nwot + ¢n)

n=1

¢, = — arctan (Bn>
Ap

)= T B
) B,

Sln(¢n) - \/W

21



2.2.2 Sine form

Given:
Cn =+/A2+ B?
* An
®,, = arctan <Bn>
Then:

F(t)=Cy+ Z (A, cos(nwot) + By, (sin nwot))

n=1

cos(nwot) +

—C'()Jrz:\/A2 <\/A?7 \/7$1nnw0t>

= Co+ Z Ch (sin(¢:) cos(nwot) 4 cos(¢r) sin(nwot))

n=1

=Cy + Z Ch, sin(nwot + @)

n=1

¢ = arctan

7 N

)

s An
o=
* Bn
cos(0}) =~y

3

22



2.2.3 Example: Square waveform with period T

The square waveform is defined as:

Then:
A, =0
2 ( [z g
B,= = ( / sin(nwot) dt — / sin(nwot) dt)
T\ Jo z
2 ( 1 I !
= — | = — cos(nwot)| + —— cos(nwot)
T nwo 0 nwo z
(1~ cos(nm))
= —(1- nm
nm
B % if n is odd
10 ifnis even
Therefore:

4 . 4 . 4
F(t) = - sin(wot) + 3 sin(3wot) + Br sin(bwot) + - - -
oo

= Z @1 ﬁ o sin((2n — 1)wot)
n=1

23



2.2.4 Representation of a square wave

o) 4
1

——r—

individual harmonics

Wy
amp=*/r

3wy NN\N\NNNY

combined harmonics

Wo

Wy, 3w,
amp=*/3x
500 ANANNANANANNNANY Wy, 30, 5Wo
amp=4/(5n)
oowo
amp=0 g, 39, Sy, ..., Pwy
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2.2.5 Plotting the frequency spectrum of a waveform

When plotting the frequency spectrum for a signal represented by a Fourier
series, use the signal amplitude generated from the equation below:

F(t) = Co+ ) Cncos(nwot + ¢n)

n=1

A signal
time
domain
time
I T g
For the square wave above:
4 . 4 4
F(t) = —sin(wot) + — sin(3wpt) + — sin(5wot) + - - -
T 3 T
Sl 1.5
kS
2 4/n spectrum
o
=
. frequency
4/@3m) I domain
I 1 1 1 5 .
0 w, 3wy 5wy 7w, dwy 11w, 13w, frequency

25



2.2.6 Time domain analysis

Time Domain Analysis

A
1
L)
RN .
= Time
E
<C
T
2.2.7 Frequency response analysis
Frequency Spectrum Analysis

o 1
S &
= T
a 4
£ i H & [|
< o+ >

0 wwy 2wy 3wy 4wy Sawy 6wy Frequency
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2.3 Even functions

Even functions can solely be represented by cosine waves, i.e.
B,=0

Because sin(nwpt) is an odd function, f(t) - sin(nwpt) is an odd function,
hence:

T
2 [z .
B, = 7/ . f(t) sin(nwot) dt =0
2
T T
2 (32 4 [z
A, == / f(t) cos(nwot) dt = / f(t) cos(nwot) dt
T)zx T Jo

F(t) = Cy+ Aj cos(lwot) + Ag cos(2wot) + As cos(2wot) + . ..

OB,

27



2.4 0Odd functions

Even functions can solely be represented by sine waves, i.e.
Cop=0, and all A, =0

Because cos(nwpt) is an even function, f(t) - cos(nwyt) is an even function,
hence:

T
2 2
A, = T L f(t) cos(nwot) dt =0
T
Co== [7 fyde=o
o= [ s =

Ba= 7 [ 1O sntonnn =3 [ 1) sinGrnt

F(t) = Cp + By sin(lwot) + By sin(2wot) + Bs sin(3wot) + . ..

o 4

28



2.5 Calculation of the Fourier coefficients

Find the Fourier series for the following periodic waveform:

1
| | |
T 0 7T 37
4 4 4
Function:
1, te[-L T
f(t) - 7 © [T 437T4]
07 te [Zv T]
Periodic:
fE+T) = f(t)
Period =T
Symmetry: Even-function
f(=t) = f(t)
The function is an even function, hence:
B,=0
1 [ 1 [t 1
= _ - = 1dt = =
o T/_Zf(t)dt T/—Z at =

A, = ;/_2 f(t) cos(nwot) dt

T

N[N

4 3
= T/o f(t) cos(nwot) dt

L oot
=7/ cos(nwot)
T
4 T

- /O " d(sin(nwot))

nrwol
*_ (sin(nwn— —0)
= sin(nwg— —
nmwwot 0y

2 . (nW)
= —sin|—
nmw 2

29




The corresponding Fourier series is:

F(t)

n 1 27 ; 2 3 2 4 2 5 2 . 2
e Wt R s LD - «— -t | ——cos
2T\ 30 P\ T sr o\ T n
1
2
1 T
ST e
| I Gl -
0 Wq 26()0 30)0 4(1)0 5(1)0 66[)0

30



2.6 Square wave decomposition

2.6.1 Half square wave decomposition

‘ \ | | |
I 0 T 3T

4 4

4
1
2
- T
2 = 2
3m o
1 ﬂ : >
0 f 2f 3f 4f 5f 6f
F(t) = %—F%COS <1212r -t>—327rcos (3-2;%)—#51(308 <5211r

31
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2.6.2 Full square wave decomposition

}f@®
1 ——
i *
t
T
IA
4
E 4
- 4
0 3“” EH
il Pzl st |6

4 4 4
F(t) = —sin(wot) + 3 sin(3wot) + = sin(bwot) + - - -

32



2.7 Complex form of the Fourier series

The standard Fourier series representation is given as:

F(t)=Co+ Z(An cos(nwot) + By, sin(nwot))

n=1
Using Euler’s formulae:
einwot + efinwot
cos(nwot) = 5
einwot 4 e—inwgt
sin(nwot) = 97
J
So: ‘
™0t = cos(nwot) + 7 sin (nwot )
e~ Mot — cos(nwot) — j sin (nwot)

The n-th harmonic component can be expressed as:

Ay, cos(nwot) + By, sin(nwot)

einwot + e—inwot einwot _ e—inwot
= 4 2 + Bn 2j
einwgt + e—inwotQ - 6inw0t _ e—inwot
=A, T — 7By 9
_ A"l B jBn inwot An +~] —inwot
2 2
Denoting:
D :An_]Bn :An+]Bn
n 9 s —n 9
Ag
Dy=—
07 2

An Cos(nwot) + BTL Sin(nwot) = Dneinth _|_ D_ne—inwmf

Therefore, the Fourier series can be expressed as:

oo [ee]
F(t) — Do + Z(Dneinwot—kDfne*m‘“()t) _ Z Dneinwot
n=1

n=—oo

33



Coefficients

2.7.1
The coefficients D,, can be evaluated in the following manner:

_ % / i F(t) cos(nwot) dt — % / 2 F(1) sin(nwot) dt

-7 /_ () (cos(nant) — j sin(naot)) dt

wﬂmﬂ m'ﬂw,ﬂ

1 2 .
_ —1nwot
-/ RS

The coefficients D_,, can be evaluated in the following manner:

D_, = (A +jBy)
2
T . T
_ L7 Ndt+ 2L [ f(t)si t) dt
=7 ) F(#) cos(newot) dt + 7 . f(t) sin(nwot)
2
1 (%
=7/, f(t)(cos(nwot) + j sin(nwot)) dt
|t
_ = inwot
=7/ r f(t)e dt
2
Note that D_,, is the complex conjugate of D,,:
D, = (An - ]Bn)
2
(An +jBn)

So the Fourier series decomposition has the D,, in complex form

T
1 2 .
Do = Cft)emmeot gt = 0,41, 42, ...

!

We have the complex form of the Fourier series:

o
Fly= 3 Dot

n=—oo

34



2.8 Regular form vs complex form

2.8.1 Regular form

9 [T
A, = / f(t) cos(nwot)dt n=1,2,3,...
T 0
2 T
B, = T/ f(t)sin(nwot)dt n=1,2,3,...
0

F(t) = Co+ Z Ay, cos(nwot) + By, sin(nwot)

n=1

2.8.2 Complex form

2.9 Cosine-only form vs complex form

2.9.1 Cosine-only form

F(t) = Co+ Z C,, cos(nwot + ¢n,)

n=1
2 t
A, = / f(t) cos(—nwot) dt = A,
T Jo

2 t
B_, = / f(t) sin(—nwot) dt = —B,,
T Jo

Cn=1/A%2, +B%, =\/A2+B2=0C,

B_ B
¢_n = arctan (A n) = arctan A—n = —¢p
—n n

1 o
F(t)=Co+ 5 __z: ) Cy, cos(nwot + én,)
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2.9.2 Complex form

D, = L s f(t)e~tnwot gt
TJ-%
n=0,=+1,+2,
o
F(t) = Z D,,e™ot
n=—oo

2.10 Complex Fourier series decomposition

INJe
o

IS
w
~

Using nwwg = m:

T
D, = = 2 f(t)e—inwot dt

N

T
1
= T 1€_mt dt

Using Euler’s formulae:
inwot 4 e—inwgt

2

e

cos(nwot) =

inwot + e—inwot

2j

e

sin(nwot) =
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We hayve:

To find Dy:

T
1 [% 1
Dy== 1dt ==
0 T/_g; 2

The square signal can be decomposed in complex form:

oo
F(t)= Y Dye™!

n=-—00
w . .

— DO + ZDn(eznwot +€—znwot)
n=1

inwot + e—inwot

2

o
= Do+ 2D,°

n=1
1 >, _sin (%)
=3 + nzz:l 27 cos(nwot)

Setting wg = 2%, the result is the same as the decomposition using the regular
Fourier series:

1 2 2 2 2 2 2 2
F(t):§+;cos (1-;-t)—%cos <3-;-t>+5ﬂcos (5-;~t)—77rcos
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2.11 Signal reconstruction

Given:
e DC ()
e The all harmonic amplitude: A, and B,,n=1,2,..., N
e The fundamental frequency wg
We can reconstruct the signal by using either one of the following:

F(t)=Co+ Y (Ancos(nwot) + By sin(nwot))

n=1

[e.e]
F(t)= > D™

n=—0oo

2.12 Signal approximation

Given:
e DC ()
e The all harmonic amplitude: A, and B,,n=1,2,..., N
e The fundamental frequency wg

We can approximate the signal by Sy (t):

N
F(t)= ) Dye™
n=—N
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2.12.1 Approximation error

A practical calculation of the Fourier series requires that we truncate the
series to a finite number of terms.

N
f(t) ~= Z Dneinwot _ SN(t)
n=—N

The error for N terms is:

e(t) = f(t) = Sn(t)

The use the mean-square error (MSE) defined as:

1T,

MSE is minimum when D, is equal to the Fourier series’ coefficients.

)
R overshoot ~ 1 0% =15

“V':jwwvba- —_—

The Gibbs phenomenon
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2.13 Amplitude and phase
Based on the cosine form of the Fourier series:
F(t)=Co+ Y Ancos(nwot + ¢n)
n=1

A periodic waveform can be represented by an infinite series of cosine of
single amplitude and phase.

Single amplitude: C,, = \/A2 + B2

n n

B
Phase (angle): ¢,, = — arctan <n>
Ay,

2.14 Fourier spectrum

2.14.1 Amplitude spectrum

Cn

&
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2.14.2 Phase spectrum

Pn

2.14.3 Amplitude, frequency and phase
e DC: () is the average value of f(t)

e The n'* harmonic amplitude: C,

e The fundamental frequency: wg

e The n'" fundamental frequency: nwo

e The n* phase angle: ¢, = — arctan (%)

e The fundamental term: For n = 1, the corresponding sinusoid is
C cos(wot + ¢1)

e The n'* harmonic term: The n!”* corresponding sinusoid is C,, cos(nwot+

Pn)
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2.15 Circuits and Fourier series

It is often desired to determine the response of a circuit excited by a periodic
signal vg(t).
Assume:

R=1Q, C=2F, T =msec

And an RC circuit excited by a periodic voltage vs(t), as shown below:

vg(1)

The square signal exciting the RC circuit:
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2.15.1 Equivalent circuit

In the equivalent circuit below, each voltage source is a term of the Fourier
series of the input voltage v4(t).

R
VWV

vsolt) (1)
v (0 (*) B
vg3() (%) Ea
vss(®) (1)

2.15.2 Steady state response of the circuit

Since each input is a sinusoid, we want to find the steady state responses to

the sinusoid.
R
R

vl v, _1 v

vgplt)

f

R

v (1)

K

R R
i JEINE s
R R
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2.15.3 Making use of the Fourier series

The Fourier series representation of the square waveform:

1 2 2 2 2 2 2 2 2
F(t):§+;cos <1-;-t>—37rcos (3-;-75)—#5%(305 (5-;-t>—77rcos (7-;~t)+...

Since T' = 7, the first 4 terms of vs(t) are:

2 2 2
+ — cos 2t — — cos 6t + — cos 10t
T 3T 5m
~N = —— ~——

vs(t) =~ 3
vso(t) vs1(t) Vs3(t) vs5 ()

The steady state response vg(t) can be found using superposition:

Vo(t) = vo0(t) 4+ o1 (t) + vo3(t) + vo5()

2.15.4 Getting the impedance of the capacitor

The impedance of the capacitor is:

1
o= —— | =0,1,3,5,...
¢ ’L'TL(,UQC7 orn ’
Because:

T=m, woz%:2sec

Since:

R=1Q, C=2F, T =msec

We can find:
_1
Von = LOC;VSTL
R+ inwoC
Vin
1+ inwgCR
Ven
14 j74n
(1 = j4n) Vs,
(1 —74n)(1 + j4n)
(1 —74n)Vy,

(14 16n2)

B 1 ( 1 . 4n )V
T VTriem \VIrienz ‘Vitienz) "

44



Let 6,, = —arctan(4n):

1
‘/;)n = m(COS Hn + j sin 971,)‘/877,
1 .
= 7mez0n%n7 n=0,1,3,5,...
Since Vi, = Vi |e?0t = %eﬂ"t:
1 .
V., = 7619nv
on /71 —"_ 16n2 sn
— 2 62nt+9n
nmv1 + 16n2
When n = 0: )
Voo = 5
When n = 1:
0; = —arctan(4 x 1) = —75.96°
Vol — 1 1 216 12 ei2><17f(775.96) — 0'15446i(2t*75.960)
™1+ X
When n = 3:
03 = — arctan(4 x 3) = —85.24°
V03 = 3 - 216 32 €i2><3t(—85.24) — 0.0176€i(6t_85'240)
w1+ X
When n = 5:
05 = — arctan(4 x 5) = —87.14°
‘/05 _ - - +216 52 ei2><5t(—87.14) — 0.0063€i(10t_87'140)
TV X
Therefore:

o(t) = 0.5+0.1544 cos(2t—75.96°)+0.0176 cos (6t —85.24°)+-0.0063 cos(10t—87.14°)
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2.16 Conditions for the Fourier series

To be described by the Fourier series, the waveform f(¢) must satisfy the
following mathematical properties:

e f(t) is a single-value function, except at possibly a finite number of
points.

e For any tg, the integral ft?JrT |f(t)]dt < 0.

e f(t)) has a finite number of discontinuities within the period 7.

e f(t) has a finite number of maxima and minima within the period

T.

In practice, f(t) is usually an amplitude function, so the above 4 conditions
are always satisfied.

2.17 Insights

2.17.1 Frequency response methods

Giving a different kind of insight into a system with insights of unexpected
results.

2.17.2 Frequency spectrum

Focusing on how signals of different frequencies are represented in a signal
thus with insights in terms of the spectrum of the signal.

2.17.3 Computer processing

Often, it is easier and more cost-effective to characterise the frequency con-
tent of a noise signal than to give a time description of the noise.

2.17.4 Applications

Different treatment of different parts of the electromagnetic spectrum means
that you can separate the different radio, television and cell phone signals.
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3 Bandwidth and frequency response

e It is important to estimate the spectrum of a signal when choosing a
measurement system.

e Ideal measurement systems replicates all frequency components of
an input signal.

e Practical measurement systems have limitations in reproducing all
frequencies.

3.1 Decibel scale

The common scale used to measure fidelity of a measurement system’s
reproduction at different frequencies is the decibel scale:

Aout
dB =201
0 oglo(Am)

Where:
e A;, is the input amplitude of a harmonic

e A,y is the output amplitude of a harmonic

3.2 Frequency response curve (Bode plot)

A frequency response curve or a Bode plot plots ’?4“:: versus input frequency.

7

amplitude ratio (4,,:/4:)

r 3

1000 | = = = = = = —— — = = -

0.707
(-3dB)

bandwidth

»
>

Wy, Wy

frequency
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3.3 Bandwidth

Bandwidth is the range of the frequencies where the input is not attenuated,
i.e. the amplitude is not reduced, or the volume is not reduced, by more
than —3dB, i.e.

Bandwidth = wy, to wy,

Where:
e wy is the low cut-off or corner frequency

e wy is the high cut-off or corner frequency
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3.3.1 Why —3dB?

The value comes from half of the output power over the input power, i.e.

A
= out _ 1
Ain 2
1
= dB =20 loglo \/;
~ —3dB

3.3.2 Example

Calculating output amplitude A} given a measurement frequency response
curve, with the input signal spectrum as:

Vin(t) = Aj sin(wot) + Az sin(2wot) + As sin(3wot) + - - -

input signal spectrum

wp 2wy 3wy 10w, frequency

The output amplitude A} is calculated as:

Al = (iﬁ“t> A

Aout /A : measurement system :
: frequency response [
1 ] {
J 1
0.5 ]
0.25 . L
| ' frequency
Aout ! output signal i
i spectrum i
I 1
| 1
| 1
! 1
I 1
frequency
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4 Periodic functions

4.1 Definition

A periodic function is any function of time that satisfies the following:
fE+T) = f(t)

Where:

e T is a constant called the period of the function

4.2 Even-function symmetry

Any function of time f(t) that satisfies the below condition is called an even
function.

ey 4
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4.3 0Odd-function symmetry

Any function of time f(¢) that satisfies the below condition is called an odd
function.

f©&y 4

4.4 Properties of symmetric functions

Let f(t) be a periodic function with period 7.

10 | I s
Even fi f(t)dt =2 fog f(t)dt
Odd f_%z ft)dt=0
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4.5 Conversion from non-periodic to periodic

4.5.1 Original pattern
f®

A non-periodic function f(t) defined over (0,t) can be expanded into a
Fourier series which is defined only in the interval (0,t¢). Note that the
original pattern may not necessarily pass the origin.

4.5.2 Without considering symmetry
f(®

One simple technique that can be applied is to offset the original pattern
along the time axis by a distance of nT'(7 < T),n = +1,+2,+3,. ..
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4.5.3 Expansion into even-function symmetry

f@®

(T =2t

A second pattern can be created by mirroring the original pattern against
an axis t = 7.

An even-function symmetric periodic waveform can be generated by offset-
ting the two patterns merged along the time axis by a distance nT(T =
27),n = +1,£2, 43, ...

4.5.4 Expansion into odd-function symmetry

f(t)

=2t :': "'
{

2\

A third pattern can be created by mirroring the original pattern against the
time axis and then the axis t = 7.
An odd-function periodic waveform can be generated by offsetting the two

patterns merged along the time axis by a distance nT(T = 27),n = £1,£2,43, ...
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4.6 Examples

4.6.1

Square signal

f®

4.6.2

[

Triangular signal

f(®)

A

o4

Loy |



4.6.3 Sawtooth signal

1 F®

T4 1 1 1 ~
W (= AN B =Rz

t=0

4.6.4 Pulse signal

N0 —| k [—
=i -
A

le—
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4.6.5 Rectified signal

£

[/AVAVAVAVAVAN

-

l—

t=0

4.6.6 General periodic signal

| F®

A_N_/[
/\\/\/\/

|
[ I 2l

=]
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5 Dynamic systems

5.1 Example 1

A linear potentiometer used as a position sensor.

wiper Ri_x = Rp — Ry
+ R : + *
L_
C) VS RP; - _‘I‘_Xm]:l‘ V; C) Rx = (Xin/L)Rpg Vout
Ry iy i
Vaut
o
Potentiometer Equivalent circuit
The system behaviour is:
Ry Vs
Vour = = Vs = —X;
oy, Rp S L m

Where:
e X, is the wiper displacement with the potentiometer
e 2, is the maximum resistance of the potentiometer
e . is the resistance between the potentiometer leads

e [ is the maximum amount of wiper travel
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5.2 Example 2

A resistor-capacitor circuit.

In this system, applying Kirchhoff’s Laws and the voltage-current relations
for a resistor and capacitor produces a first order linear differential equation
relating the output voltage to the input voltage.

The system behaviour is:

o d‘/out

RC
dt

+ Vout = Vin
Where:

e R is the resistance of the resistor

e (' is the capacitance of the capacitor

e V. is the output voltage

e V;, is the input voltage
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5.3 Example 3 (second-order system)

A spring damping system.

LLLL L L

kx‘ ‘ bdx/dt

k2 |k

m

lFext

m
Foyt Tx Free-body diagram
of mass

The system behaviour is:

d*z dx
mﬁ + ba + kx = Fezt(t)

Where:

e m is the mass of the block

b is the damping coefficient

k is the spring constant

of the mass

Feyt(t) is the external force along the z-direction

99

x is the displacement of the mass from the equilibrium (rest) position



5.4 Measurement system: Ordinary differential equations

Input Signal
P 9 Fast to

V; respond

L 2

Measurement
System

Ordinary

Differential

(Sensors) Equations

2

Output Signal Good to
understand

Vout

5.4.1 Why ordinary differential equations?

e Ordinary differential equations have time as the only variable.

e Ordinary differential equations can be used to explain the behaviour
of a dynamic system.

e At steady state, there is no change, which means there is no need to
use ordinary differential equations in steady state.
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6 Linear systems

e Linear systems are of the form:

dNXout dN_lXout dXout
A, An_ A Ao Xou
P + AN—1 JiN—1 at + AoXout
d™ X, dM=1X;, dXin
—BM dtM +BM_1W +B1 d +B0in

e Alternatively:

N
d Xout
> An Z m dtm
n=0
e The word "linear" comes from the coefficients:
Ap(n=0,...,N) and B,,(m=0,...,M)
Where:

e X, and X,,+ are input and output variables
e A, and B,, are coefficients

e N is the order of the system

6.1 Homogeneous equation of a linear system

dr Xout
Z A dtn =

Where:

e X, is the output variables
o A, is a coefficient

e N is the order of the system
6.2 Characteristic equation of a homogeneous equation

N
E A, s" =
n=0

Where:

e A, and s are coefficients

e N is the order of the system
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6.2.1 Primary (N =1)

Ais+A;=0
Ao .
S:/TT’ if Ag#0

6.2.2 Quadratic (N =2)
Ags® + A1s+ Ag =0

— Ay + /AT 1Ay A,
S =
24,

if Ay £ 0
6.3 Roots of the characteristic equation

N
D Aps" =0,Ay #0
n=0

6.3.1 When N=1

Single real root:
S1 =T

Where:

e s is the coefficient of the characteristic equation

e 1 is the root

6.3.2 When N =2

e Double real roots:

e Two different real roots:
51 # 82

e Two conjugate roots:
si1t=a+bi, sy=a—b
6.3.3 When N =&
Multiple k-fold real roots:



6.4 Solving the homogeneous equation
6.4.1 When N =1

e Single real root: s; =

e General solution for the homogeneous equation:
Coert
6.4.2 When N =2
1. Two conjugate roots:

si=a+bi, sy=a-—b

General solution for the homogeneous equation:

(Cy sin(bt) + Cs cos(bt))e

2. Two different real roots:

81 7 S2
General solution for the homogeneous equation:

Cleslt + 02682t

3. Double real roots:
S1 =82 =T

General solution for the homogeneous equation:
(Cy + Cat)e™
6.4.3 When N =&
e Multiple k-fold real roots:
S]=82=...=8§, =T
e General solution for the homogeneous equation:

(Cg + Cit + C2t2 + ...+ Ck_ltk_l)ert
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6.5 Input functions in a linear system
e Step input
e Sinusoidal input
e Pulse input

e Square input

6.6 Special cases of linear systems

6.6.1 Zero-order system

e M =0
e N=0
AOXout = BOXZ’VL
Where:

e Ay and By are coefficients

e X+ and X, are output and input variables

6.6.2 First-order system

e M =0
e N=1
dX,
Ay d;ut + Ao Xout = BoXin
Where:

e Ay, Ay and By are coeflicients

e X,,+ and X;, are output and input variables
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6.6.3 Second-order system

e M =0
o N =2
A2 X dX
Ay + A= o+ Ao Xow = BoXin
Where:

e Ay, Ay, Ag and By are coefficients

e X,,+ and X;, are output and input variables

6.7 Zero-order system

6.7.1 Example

wiper R_x =Ry, —Ry

+ R : + *

L—x
C) Vs Rpg _I_Xin]} Vs () Ry = (Xin/L)Rpé Vout
Ry ¥ i

Vout
)

Potentiometer Equivalent circuit

Where:
e X, is the wiper displacement with the potentiometer
e IR, is the maximum resistance of the potentiometer
e R, is the resistance between the potentiometer leads
e [ is the maximum amount of wiper travel

System behaviour:

R V.
Vout = —R:Vs = *Ls Xin
Zero-order system:

AOXout = BOin
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6.7.2 General zero-order system

AOXout = BOin

B
Xout = IEXZ
Xout = Kin

Where:

e X, and X;, are output and input variables

e K is a constant called gain or sensitivity

6.7.3 Remarks

A zero-order system follows the input exactly without any time delay or
distortion.

Input Signal X;, — Degenerated differential equations — Output signal X,

The input signals can be of any periodic waveform.

6.8 First-order system

6.8.1 Example

In this system, applying Kirchhoff’s Laws and the voltage-current relations
for a resistor and capacitor produces a first order linear differential equation
relating the output voltage to the input voltage.

System behaviour:
_ d‘/out

RC 7

+ V;)ut = V;n
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6.8.2 General first-order system

When N =1 and M = 0:

dX,
d:ut + AOXout = BOXH’L

dXout

dt
=KX;

Ay

=T

+ Xout

Where:

o K = ]j—g is the static sensitivity

o T = ‘2—(1) is the time constant

Hence, the first-order system equation can be written as:
dXout
dt

Note that in this standard form, the coefficient of the X,,; term must be 1,
hence:

+ Xout = KX’L’VL

Ay %0

6.8.3 Step response of first-order systems

The step input changes instantaneously from 0 to a constant value A;, and
is stated mathematically as:

X, = 0 t<0
Aip t>0

The output of the system in response to this input is called the step response
of the system. For a first-order system, we can find the step response by
solving the first-order ordinary differential equation below:

Tdii:“t + Xout = K Xin
Initial condition:
Xout(0) =0
Characteristic equation:
7s+1=0

Roots of the characteristic equation:
§=—=
-
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6.8.4 Solving the homogeneous equation

e Linear system:
dXout

dt

T + Xout = KX,

e Homogeneous equation:

Ts+1=0

e Root:

r=—=
-

General solution for the homogeneous equation:

t
Xouth = 006_;
Where:

— () is a constant determined later by applying initial conditions

A particular or steady state solution resulting form the step input
Xin = Ain:
Xoutp = KAzn

General solutions for the linear system:
_t
Xout = Xouth + Xoutp = 006 T+ KAm
6.8.5 Determining the step response of the first-order system

Determining the constant by initial conditions:

dX out
dt

_t
Xout = Xouth + Xoutp =Ce 7 + KA
Applying the initial condition Xous|,—y = Xout(0) to this equation gives:
Xout(0) =C + KA,

T + Xout = KXy,

Thus:
C= Xout(o) - KAy,

So, the resulting step response is:
_t _t
Xout = Xout(o)e T+ KAzn(l —e 7—)

If X gt (0) = O:
Xout = KAm(l - 6_3)
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6.8.6 Graph of the step response of the first-order system

TdXout
dt
= Xout = KAi(1 — e 7)

+ Xout = KXm

t
Xout = outy, T Xoutp =Ce 7 + KA
— Xout<o) =0

in

small 1 =

large

> [
Step Response of First-order System
e The graph above represents an exponential rise in the output toward
an asymptotic value of K A;,.
e The rate of rise depends only on the time constant 7.
e The response is faster for a smaller time constant.
e After one time constant, the output reaches 63.2% of its final value:

Xowr(t =7) = KAgp(1 — 77 = 0.632K Ayy,)

e After four time constants, the step response is:

4t

Xou(t =47) = KAy (1 —e” 7)) = 0.982K Ay,

e Since this value is more than 98% of the steady state value K A;,, we
usually assume that a first-order system has reached its steady state
value within four time constants.

e When designing a first-order measurement system, look at quantities
that affect 7 and try to reduce them if possible.

e The larger 7 is, the longer the measurement system takes to respond
to an input.
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6.9 Second-order system

NED o dXout
A A Ao Xouwt = BoXin
2" + A1 I + AoXout 0
6.9.1 Example
YOI I

kx‘ ‘ b dx/dt

k§ Lo

m

lFext

m
Foye Tx Free-body diagram
of mass

Where:
e m is the mass of the block
e b is the damping coefficient
e [ is the spring constant

e z is the displacement of the mass from the equilibrium (rest) position
of the mass

o F.p4(t) is the external force along the z-direction
System behaviour:
d’z dx

— +b— + kx = Fo (¢
mdt2+dt+x t()
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6.9.2 Equations
o M =0,N=2
o Homogeneous equation:

dQXout
A
a2 Ty

dX out

A / + Ao Xout =0

e Characteristic equation:

A282+A18—|—A0, Ao 7&0

e Roots of the characteristic equation:
A282A18 +A9=0, As#0

— Ay £ /AT — 4A,A
§= 1 1 072 i Ay # 0
24,
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6.9.3 Solving the homogeneous equation

e Homogeneous equation:

N

nXOu
> A <o
o dtn

Characteristic equation:
N
> Aps"=0, Ay #0
n=0

e Two conjugate roots:

sit=a+bi, so=a—W

General solution for the homogeneous equation:

(Cy sin(bt) + Oy cos(bt))e™

Two different real roots:

51 7# 82
General solution for the homogeneous equation:

Cleslt + 02682t

Double real roots:

§1 =82 =T
General solution for the homogeneous equation:

(Cl + Czt)ert
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6.9.4 Unforced response of a second-order system

d?z dx
— +b—+kz =0
mdt2 + L + kx

Characteristic equation of the second-order system:

ms® +bs+ k=0

Roots of the characteristic equation:

_ b (YR
517 2m 2m m

b b\* k
Sg = —— — — - —
2m 2m m
6.9.5 Unforced response without damping, with b =0

d*z  dx 9

Roots of the second order system:
s1=ivVkm, sy=—ivVkm

Homogeneous solution:

0=t ([E) - ({1

Coefficients A and B could be determined by the initial conditions:

dx(t)
dx

t=0

Natural frequency of undamped oscillatory motion with radian frequency:

k

W =1/ —

m
Under this frequency, the undamped system would naturally oscillate if the
spring were stretched and the mass is released and allowed to move without

any external force (Feye = 0)
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6.9.6 Unforced response without damping, with b # 0

2z d
m£+bd—f+kx:0, ms? + bs + k=0

If the Radicand = 0, the roots of the second-order system are:

Radicand = /b2 — dmk = 0 — b = 4mk

Homogeneous solution:

k

zp(t) = (A4 Bt)e ™A = mrw? = -

Coefficients A and B could be determined by the initial conditions:

dx(t)
dt

=0

Solution:
zp(t) = (A + Bt)e “n!

This represents an exponential decaying motion.
For critical damping, if the radicand = 0, the critical damping constant is:

be = 2vVmk = 2m\/% = 2muwy,

For non-critical damping, if the radicand # 0, the damping ratio is:

Note:
1. Damping ratio is a measure of the proximity to critical damping.

2. A critically damped system has a damping ratio of 1.
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6.9.7 Properties

e Homogeneous equation:

d?x dzx
— +b— + kx =
mdt2 + I +kxr=20

e Characteristic equation:

ms>+bs+k=0

e Roots of the second-order system

L bV —dmk

2m

Because:
b. = 2mk = 2m\/z = 2muwn,
b b
be  2vmk
e 2 different real roots of the second-order system:

,_ bV dmk

2m

b b2 4mk
Ve TR

2.
/@1
- 1

Wn

= —Cwp TwpV/(2 -1

Where:

— ( is the damping ratio

— wy, is the natural frequency
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6.9.8 Under damped system (¢ < 1, with 2 complex conjugate
roots)

e Roots

s1 = —Cu, +iwn/1— (2
SQZ_Cwn_iwn\/ 1_C2

e Homogeneous solution:
xp(t) = e~ ownt [A cOS (wn\/ 1— CQt) -+ Bsin (wn\/ 1— (215)]

e This motion represents damped oscillation consisting of sinusoidal mo-
tion with exponentially decaying amplitude.

wg = wpV1—C2
e The frequency of oscillation is called the damped natural frequency.

6.9.9 Overdamped system ({ > 1, with 2 real roots)

e Roots:
s1 = —Cwn +wy + /(2 — 1

s = —Cwp — wp + <2_1
e Homogeneous solution:

xp(t) = Ae<*<+\/@771)wnt n Be(fcf\/ﬁ%’nt

e This motion represents an exponential decaying output.
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6.9.10 Graphs of unforced responses

With initial conditions:

overdamped

(¢ = 1.75)
0.5

I T I A
LI O N I I I

N critically damped
(¢ =1.0)

uriderdamped
(¢ =0.25)

-0.5+—+—+—+—+—+—++—+++r—+++++

T

LI I B |

transient homogeneous solution x;(t)

o
o
(6]
-
-
wu
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6.9.11 Summary

Let’s define:
k
Natural frequency, w, = {/ —
m
Dampi atio, ¢ b
mping ratio, { = ——
g 2vVkm
We have: )
d°z dx
— +b—+kr=0
mdt2 + i + KT
d?z dx
2 + 2@”% +wiz =0

The characteristic equation is:
§% 4 2Cwns + w,% =0

Whose roots are:
s1=—Cwp +wn +v(¢2 -1

32:_<wn_wn+ C2_1
As F.yy = 0 (unforced).
When ¢ = 0 (undamped):
zp(t) = acos(wpt) + Bsin(wyt)

When ¢ < 1 (under damped):

xp(t) = e Cwnt |:ACOS (wn\/ 1- CZt) + Bsin (wn\/ 1-— CQt)}

When ¢ > 1 (overdamped):

() :Ae(*ng\/ng)wnt +Be(7<7m)wnt

Where the coefficients A and B are determined from the initial conditions.
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6.9.12 Forced response of a second-order system

A second-order system will have forced response when F,.(t) # 0. For the
second-order system:
d*x dz
Its solution can be obtained by combining a general solution (z(t)) of its
homogeneous equation, and a particular solution (xp(t)) of the second-order
system.
2(t) = zn(t) + zp(t)

When the external force has step input:

0 t<0
) -
ext {E tZO

» time

It is easy to see that the second-order system m% + b%f + kx = Fqt(t) has
a particular solution:

F.
Ty(t) = f

Because: LF
P
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6.9.13 Solving the homogeneous equation of the forced response
of a second-order system

The homogeneous equation can be solved using the same technique devel-
oped for the unforced response of the second-order system.

As F; = 0 (unforced response).
When ¢ = 0 (undamped):
zp(t) = Acos(wnt) + Bsin(wpt)
When ¢ =1 (critically damped):
zp(t) = (A + Bt)e “n!

When ¢ < 1 (under damped):

xp(t) = e Cwnt [A cos <wn\/ 1-— {215) + Bsin (wn\/ 1— Czt)}
When ¢ > 1 (overdamped):

() :Ae(*CJr\/CQj)wnt +Be(747\/@)wnt

6.9.14 Graphs of forced responses

x(t) Underdamped 7< 1, x,(t) = e=$@nt [Acos (mm/l - {Zt) + Bsin (wm/l - (Zt)]

F./k

Initial conditions:
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6.9.15 Characteristics of a graph of forced response

T (¢ = 0.15)

o 1T

N’ T [

=

qu_; 1 \ overshoot +10% steady|state value

i T 7~

o] F-/k | } 7 A Y o

a F | W A W S~

$ ] - A

— -

. i

7] ] —

e ] rise time .

n . / settling time
. L~

Fiiiill?i%.’liif?il
0
Where:

e "Steady state value" refers to the value where the system reaches after
all transients have dissipated.

e "Rise time" refers to the time required for the system to go form 10%
to 90% of the steady state value.

e "Over-shoot" is a measure of the amount the output exceeds the steady
state value.

e "Settling time" refers to the time required for the system to settle to
within an amplitude band whose width is a specific £10% of the steady
state value.
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6.9.16 Forced response amplitude ratio vs frequency ratio graph

10

amplitude ratio (x/(F;/k))

5 \
0.1
: 10N \
0.01 —+—+—+++H —+——+++H +—
0.01 0.1 1

frequency ratio (w/w,)

Note that ( = 12 ~ 0.707 provides the best amplitude linearity over the

=

largest bandwidt
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7 System modelling and analogies

7.1 System models

[ Electrical System |

I R
—, " L V="V +VC
= 1
v ¥ Izl c R l I = Ruly + (3) 2
| Vo=V, +Ve,
ar
L v=o0 (reference) =L+ R,

v | Mechanical System
b
— 1
]_E fixed support (reference) F =F, + Fk
1
= bivy + k(x; — x3)
Fi = Fn+Fp,

v
=m—_2+ byvs

| Hydraulic System
Ry CT Q: P =P +PC

pump — — Pc =P+ P,

P=0 Ry, 1
(reference)

The systems on the right-hand side of the image are the system that are
analogous to the models on the left-hand side.
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7.2 Second-order modelling analogies

Generic Mechanical Mechanical Electrical Hydraulic
quantity translation rotation
Effort (F) Force (F) Torque (7)) Voltage (V) Pressure (P)
Flow (F) Speed (v) Angular speed Current (7) Volumetric
(w) flow rate (Q)
Displacement Displacement Angular Charge (q) Volume (V)
(q) (x) displacement
(0)
Momentum (p) Linear Angular Flux linkage %
momentum momentum (I=N® = Li) (T'=1Q)
(p = mv) (h = Jw)
Resistor (R) Damper (b) Rotatory Resistor (R) Resistor (R)
damper (B)
Capacitor (C) Spring (1) Torsiori spring | Capacitor (C) Tank (C)
()
Inertia (I) Mass (m) Moment of Inductor (L) Inertance (1)
inertia (J)
Inertia energy F=p T=h V=2 P=T
storage (special (F = ma) (T =Ja) (V= L%) (P = I%)
case)
Capacitor F=kx T =k0 V=1q P=1V
energy storage
Dissipative F=w T = Bw V =Ri P =RQ
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7.3 Similarities and differences
7.3.1 Similarities

e Mathematical representation
e Mathematical solution

e Mathematical properties

7.3.2 Differences

e Constants (coefficients, or parameters)

e Physical meanings of these parameters of the system

7.3.3 Analogies

e For those parameters among the different system types: Resistors,
valves, mass, inertia, ...

e System terms: Effort, flow, displacement, momentum, resistance, ca-
pacitance, ...

8 Sampling

8.1 Sampling rate

e Higher sampling rates allow the waveform to be more accurately rep-
resented.

e Low sampling rates may lead the waveform to be less accurately rep-
resented.

7N PN T
. ¥y I N
. b o . ar

64 samples/period 32 samples/period 16 samples/period 8 samples/period

_r—
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8.2 Analogue vs digital signals

Analogue signal ‘ Digital signal

Continuous Discrete

Generated via analogue devices | Sampled in a fixed interval
Not coded Coded value

Original signal Sequential data array

8.3 Shannon & Nyquist theorem

The best explanation for the Shannon & Nyquist sampling theorem is [this
YouTube video.

8.3.1 Sampling 1Hz sine wave at 2Hz

2 T T T T T T T
1.5

A AN NS

0
-0.5
1 —
1.5 .

-2 ] ] ] ] ] ] |
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

Amplitude

There are sufficient samples to capture each peak and trough of the signal.
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https://www.youtube.com/watch?v=Jv5FU8oUWEY
https://www.youtube.com/watch?v=Jv5FU8oUWEY

8.3.2 Sampling 1Hz sine wave at 3Hz

2 1 T T T T 1 T
1.5

A A A AL
VAR VERVERY

0
0.5

1k
1.5 -

-2 ] ] ] ] ] ] ]
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

Amplitude

There are more than enough samples to capture the variations in the signal.
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8.3.3 Sampling 1Hz sine wave at 1.5Hz

Amplitude

2
1.5

0
-0.5
-1
-1.5
-2

AN AN A
FARVARVERY,

0

0.5

1.5

2

2.5

Time (sec)

There isn’t enough samples to capture all the peaks and troughs in the signal,
which results in information being lost.
The signal may also be misinterpreted as a 0.5 Hz signal, as shown below:

2 1 1 1 1 1 1 1
1.5 —

1

0
-0.5

_’| p— —

1.5 -

-2 ] ] ]
0 0.5 1 1.5 2 2.5 3 3.5 4

Amplitude

8.4 Why don’t we sample as fast as possible?

e Sampling as fast as possible results in huge amounts of data.
e [t also requires high speed software.

e A lot of storage is needed to store the data.
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8.5 Logic behind the minimum sampling rate

e We need to sample a digital signal at a rate more than 2 times the
maximum frequency (fn.;) component in the signal to retain all
frequency components.

e To faithfully represent the analogue signal, the digital samples must
be taken at a frequency fs, such that:

fS > 2fmax
Where:

— fs is the sampling rate (not sampling frequency)

— fmaz 18 the maximum frequency in the signal, also known as the
Nyquist frequency

e If we approximate a signal by a truncated Fourier series (/N terms), the
maximum frequency component is the highest harmonic frequency.
Hence, the time interval between the digital samples is:

1

At = —
[s

8.6 Theorem

N
F(t) = Z C,, cos(nwot + ¢n,)

n=0

N
fty= Y Dyem
n=—N

Where:

e N is the maximum frequency component of the signal
e f; is the sampling rate

® frmae is the Nyquist frequency

8.6.1 Shannon-Nyquist Theorem

fS > 2fmax
Where:

e f, is the sampling rate

® fiaz 1s the Nyquist frequency
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8.6.2 Time interval between the digital samples (At)
1

At = —
fs

Where:
e At is the time interval between the digital samples

e fs is the sampling rate

8.6.3 Sampling 1Hz sine wave at 2Hz

2 1 1 1 1 1 1 T
1.5

A A AN
SAVARVARVY/ \./

-1.5F

-2 ] 1 1 1 1 ] 1
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

Amplitude

Maximum frequency component: N =1

Nyquist frequency: fiq. = 1 Hz

Sampling rate: fs = 2Hz

Time interval between digital samples: At = % sec
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8.6.4 Sampling 1Hz sine wave at 1.5Hz

2 1 T T T T T T
1.5F

AN AN A

0
0.5 -
-1 -
1.5 -

-2 | | | ] ]
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

Amplitude

e Maximum frequency component: N =1
e Nyquist frequency: fine = 1 Hz
e Sampling rate: f; = 1.5Hz

e Time interval between digital samples: At = % = % sec

8.6.5 Sampling a sine wave with multiple frequencies at 6 Hz

Amplitude

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec)

Maximum frequency component: N = 3

Nyquist frequency: frqe: = 3 Hz

Sampling rate: fs = 6Hz

Time interval between digital samples: At = % sec
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8.7 Aliasing
8.7.1 Sampling of a clock with only one hand

e Sampling a clock at double the Nyquist frequency:

— Sampling rate: fs = % Hz
— Nyquist frequency: fraz = % Hz
— Double Nyquist frequency: finaz = % Hz

— Aliasing occurs as the receiver cannot tell if the clock is moving
forward or backwards.

e Sampling of a clock above double the Nyquist frequency:

— Sampling rate: fs = 1—15 Hz
— Nyquist frequency: finaz = % Hz
— Double Nyquist frequency: finaz = % Hz

— No aliasing occurs as the receiver can tell that the clock is moving
forward.
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e Sampling of a clock under double the Nyquist frequency:

— Sampling rate: fs = 4—15 Hz
— Nyquist frequency: fraz = 6—10 Hz
— Double Nyquist frequency: finae = % Hz

— Aliasing occurs as the receiver thinks that the clock is moving
backwards instead of forward.
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8.7.2 Undersampled signal

Below is a signal with a frequency of 8 Hz sampled at a rate of 8.5 Hz

SR = sampling rate
2

15 -

-05F

An undersampled signal can confuse you about its frequency when recon-
structed as the sampling rate is too low.

8.7.3 Reconstruction of a sampled sine wave

K3 o L
Y 2 QN
. . . . . .
g . . s . .
b A3 . A3 s .
~ 7 ~ 7
. . . 0
sl s
. . A
s ¢

a. Nyquist rate sampling: fg=2f

b. Oversampling: f; =4 f

./\ /\ -
‘ \/ \/ ‘ .\'“."“

c.Undersampling: f; = f
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8.7.4 Frequency of aliased signal (f,)

The frequency of an aliased signal (f,) is given as:
fo=1fs-i—fal
Where:
e f, is the frequency of the aliased signal
e f¢ is the sampling rate

e ¢ is the closest integer multiple of the sampling rate to the signal being
aliased

e f, is the frequency of the signal being aliased
For example, if the signal is f, = 21 Hz and is sampled with f; = 10 Hz,
then the aliased frequency would be |i - fs — f,| = |2-10 — 21| = 1 Hz
8.7.5 Capturing the shape of the waveform

Even though sampling at twice the Nyquist frequency will ensure that
you measure the correct frequency of your signal, it will not be sufficient to
capture the shape of the waveform.
If the shape of the waveform is desired, you should sample at a rate approx-
imately 10 times the Nyquist frequency.
8.8 Applications
8.8.1 Recording audio

e The range of human hearing is 20 — 20, 000 Hz.

e We lose high frequency response with age.

e Women generally have better response than men.

e To reproduce an audio signal of 20 kHz requires a sampling rate of at
least 40 kHz.

e Below the sampling rate of 40 kHz, aliasing will occur, according the
Shannon-Nyquist Theorem.
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8.8.2 Digital voice telephone transmission

e Voice data for telephone purposes is limited to frequencies less than
4 kHz.

e According to the Shannon-Nyquist Theorem, it would take 8,000 sam-
ples 2 - 4,000 to capture a 4,000 Hz signal perfectly.

e Generally, one byte is recorded per sample (256 levels). One byte is
eight bits of binary data.

e 8bits - 8,000 samples per second = 64 kbps over a circuit.
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9 Quantisation and encoding
9.1 Digitising
Digitising Sound

J/M/W— ,?;?‘&;\—»077700077707
)

Waveform Computer Steam of zeros and ones
(analogue sound Sound Card (digital sound)

Playing back the digital sound file

017700077101—&?3%& 4\{1/%/[/&*/\/
L]

Steam of zeros and ones Computer Waveform
(digital sound) Sound Card (analogue sound)
9.2 Pulse code modulation (PCM)

e Pulse code modulation consists of three steps to digitise an analogue
signal:

1. Sampling
2. Quantisation

3. Binary encoding

e Before we sample, we have to filter the signal to limit the maximum
frequency of the signal as it affects the sampling rate.

e Filtering should ensure that we do not distort the signal by removing
high frequency components that affect the signal shape.
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9.2.1 Components of a PCM encoder

Quantized signal

PCM encoder

L~

Y

Sampling '

Quantizing '

> Encoding "

Analog signal

T

PAM signal

11+++1100

Digital data

9.2.2 Sampling methods and pulse amplitude modulation (PAM)

e The analogue signal is sampled every T secs.

e T, is known as the sampling interval.

There are 3 sampling methods:

fs = T% is called the sampling rate or sampling frequency.

1. Ideal, which is an instant pulse at each sampling instant.

2. Natural, which is a pulse of short width with varying amplitude.

3. Flat top, which is to sample and hold the value. It is similar
to the natural sampling method, but with a constant amplitude

value.
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This process is known as pulse amplitude modulation (PAM) and the
outcome is a signal with analogue (non-integer) values.



9.2.3 Images of the sampling methods

Amplitude

- </Analog signal

~
4 N

’ Tlme

GRS

a. Ideal sampling

Amplitude

A
/Analog signal
n Time

\ILUJU'

b. Natural sampling

Amplitude

A
Anal |
\/ nalog signa
‘|_| Time

-

\

~ -

¢. Flat-top sampling
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9.3

Quantisation

Sampling results in a series of pulses of varying amplitude values rang-
ing between two limits: a minimum and a maximum value.

The amplitude values are finite between the two limits.

We need to map the finite amplitude values onto a finite set of known
values.

This is achieved by dividing the distance between the minimum and
maximum into L zones, each of height A

max — min

A:
L
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9.3.1 Analogue quantisation size (code width) (Q)

Vmaa: - Vmin

@= N

Where:

e () is the analogue quantisation size

Vinaz 1 the maximum voltage value

Vinin is the minimum voltage value
e NN is the number of zones

Example:

e Given N =8, Ve = 10V, Vyin =0V,
e Analogue quantisation size of code width: @ = Vm“xjf,vm"" = 108_ 0 =
1.25V

e This means that the amplitude of the digitised signal has an error of
at most 1.25V.

e Therefore, the A/D converter can only resolve a voltage within 1.25V
of the exact analogue voltage.
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9.3.2 Quantisation vs encoding

e Quantisation is the transformation of a continuous analogue input into
a set of discrete output states.

e Encoding is the assignment of a digital code word or number to each
output state.

A 101

4 100 l

g} 011
—
2 000 |
1 001
0 000
output Output  0.00- 1.25- 2.50- 3.75- 5.00- 6.25- 7.50- 8.75-
state code 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.0

Discretised analogue voltage ranges

e Each output state covers a subrange of the overall voltage range.

e The step-stair signal represents the states of a digital signal generated
by sampling a linear ramp of an analogue signal occurring over the
voltage range.

e The figure shows how a continuous voltage range is divided into discrete
output states, each of which is assigned a unique code.
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9.3.3 Analogue-to-digital (A/D) converter

e An analogue-to-digital converter is an electronic device that converts
an analogue voltage to a digital code.

e The output of the analogue-to-digital converter can be directly inter-
faced to a digital device, like a microcontroller of a computer.

e The resolution of an analogue-to-digital converter is the number of bits
used to digitally approximate the analogue value of the input.

e The number of possible states N is equal to the number of bit combi-
nations that can be produced from the converter:

N =2"

Where:

— N is the number of possible states

— n is the number of bits

e Most commercial analogue-to-digital converters are an 8, 10 or 12-bit
device, with 256 (28), 1024 (210), or 4096 (2'2) states respectively.

9.3.4 Mid-points

e The midpoint of each zone is assigned a value from 0 to L — 1, resulting
in L values.

e Each sampling falling in a zone is then approximated to the value of
the midpoint.
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9.3.5 Quantising zones and mid-points

e Assume a voltage signal with amplitudes Vp,;, = —20V and Vi =
20V.

e Using L = 8 quantisation levels.

e Zone width: A = 207(8720) =5

e The 8 zones are:

— -20 to -15
— -15 to -10
— -10 to -5
—-5to0

— 0to +5

— +5to +10
— 410 to +15
— +15 to +20

e The mid-points are:

- -17.5
- -12.5
- -7.5
—-2.5
- 2.5

- 75

— 125
- 17.5
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9.3.6 Assigning codes to zones

e Each zone is then assigned a binary code.

e The number of bits required to encode the zones, or the number of bits
per sample, is obtained as follows:

ny = lOggL

Where:

— ny is the number of bits to encode the zone.

— L is the number of zones
e In the example above, ny = 3.
e The 8 zone codes are therefore:

— 000
- 001
— 010
— 011
— 100
— 101
- 110
- 111

e Assigning codes to the zones:

— 000 will refer to zone -20 to -15
— 001 will refer to zone -15 to -10
— 010 will refer to zone -10 to -5

— 011 will refer to zone -5 to 0

— 100 will refer to zone 0 to +5

— 101 will refer to zone +5 to +10
— 110 will refer to zone +10 to +15
— 111 will refer to zone +15 to +20
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9.3.7 Quantisation and encoding of a sampled signal

Quantization Normalized
codes amplitude

7 4D 19.7

16.2
6 3D
2D 11.0
5 75
4 D
O L

-3 l lTime

> -D 6.1 -5.5 60

-9.4
1 -2D 113
0 -3D
-4D

Normalized -1.22 1.50 3.24 3.94 2.20 -1.10 -2.26 -1.88 -1.20
PAM values
Normalized -1.50 1.50 3.50 3.50 2.50 -1.50 -2.50 -1.50 -1.50
quantized values
Normalized -0.38 0 +0.26 -0.44 +0.30 -0.40 -0.24 +0.38 -0.30
error
Quantization code 2 5 7 7 6 2 1 2 2
Encoded words 010 101 m 111 110 010 001 010 010
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9.3.8 Quantisation error

e When a signal is quantised, an error is introduced as the encoded signal
is an approximation of the actual amplitude value.

e The difference between the actual and encoded value (mid-point) is
known as the quantisation error.

e The greater the number of zones, the smaller the width of the zone
(A), which results in smaller errors.

e However, increasing the number of zones will also increase the number
of bits required to encode the samples, which will increase the bit rate.

3 77N

b
2 AN

1 ;Approximation or Quantising error
O .
2 3 Greater error = more noise
Ideal Waveform = Quantized Waveform + Quantization Errors

¥ 1 iv 7
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10 Amplifiers

An amplifier increases the amplitude of a signal without affecting the phase
of the different components of the signal. This means the voltage gain should
be constant for all frequencies.

10.1 Relationship between output and input

]fn ] out
O—no —0
+

Amplifier Vit

‘/out = Av‘/;n
Where:
e A, is the gain. Ideally, A, is constant for all frequencies, but there is

a bandwidth associated with cut-off frequencies.

10.2 Filtering and amplifier linearity

e Amplifiers are designed for certain frequencies instead of all frequen-

cies.

e Output characteristics are governed by the amplifier’s bandwidth.

e There are associated cut-off frequencies (thresholds) for amplifiers.
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10.3 Characteristics of amplifiers
e Size
e Cost

e Power consumption

Input impedance

Output impedance
e Gain

Bandwidth

10.3.1 Input impedance (Z;,)

Most amplifiers are designed to have:
e Large input impedance
e As little current as possible is drawn from the input

The input impedance Z;,, is given by:

Where:
® Z;, is the input impedance
e V;, is the input voltage
e [;, is the input current

The input impedance should be large to have little current drawn from the
input.
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10.3.2 Output impedance (Z,,;)

e The voltage drop AV, is a measure of how much the output voltage
drops with the output current.

e Most of the amplifiers are designed to have a very small output impedance,
so the output voltage will not change much as the output current
changes.

Output impedance Z,,; is:

Zout =

A%ut
Iz'n

Where:

e AV, is the voltage drop measured relative to the output voltage with
no current. The output impedance should be small to have little change
when the output current changes.

10.4 Operational amplifiers
10.4.1 Characteristics

1. Low-cost.
2. Versatile integrated circuits.
3. Single chip consisting of internal transistors, resistors, and capacitors.

4. Combined with external discrete components to create a wide variety
of signal processing circuits.

10.4.2 Basic block of amplifiers

Amplifiers ‘ Integrators ‘ Summers

A /D converters | D/A converters Differentiators
Active filters Sample & hold amplifiers | Comparators
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10.4.3 Functions

Inverting amplifiers
e Non-inverting amplifiers

e Summer amplifiers

Difference amplifiers

Integrator amplifiers

Differentiator amplifiers
10.4.4 Schematic and nomenclature

Inverting input
terminal

-
—

Non-inverting input terminal

\ Vout

Output terminal

e A differential input

— The inverting input (—)
— The non-inverting input (+)

e Single output
e Infinite gain (00)

e The voltages are all referenced to a common ground.
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10.4.5 Output voltage

1

‘/;ut = Av‘/z’n
Va=A(V2—-W1)

The output voltage is proportional to the difference between the two inputs
of the amplifier.

10.4.6 How to control the gain?

/ Feedback loop

out

v, +

The feedback loop is connected from the output to the inverting input (—).
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10.4.7 Closed loop vs open loop configuration

Closed loop configuration ‘ Open loop configuration

When feedback is present When feedback is absent

Stabilisation of the amplifiers | Considerable instability due to the high gain
Control of the gain Seldom used

10.4.8 Ideal model for operational amplifiers

IOUI
ﬁ

Vout

Infinite impedance at both inputs.
e No current is drawn from the input circuits.
e Therefore, I, =1_ = 0.
Infinite gain, assuming no current flow between the short of the two inputs.

e The difference between the input voltages must be 0, otherwise the
output would be infinite.

e Therefore, V. = V_.
Zero output impedance.
e The output voltage does not depend on the output current.

Note that Vi, Vi and V_ are all referenced to the same ground, and there
must be feedback between the output and the inverting input for stable linear
behaviour.
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10.4.9 Summary of the ideal operational amplifier

e The ideal operational amplifier has infinite impedance at both inputs,
so no current is draw from the input circuit: I, =1_ = 0.

e [t has infinite gain, so the difference between input voltages is zero:
V+ - V,.

e It has zero output impedance, so the output voltage does not depend
on output current.

e The open-loop gain is a very large, and can be considered as infinite.

e The input impedances of the two terminals are very large, and can be
considered as infinite.

e The output impedance is very small, and can be considered as zero.

10.4.10 Real operational amplifier

2 - +15V | 6

3 + Vaut 7

4| -15v X | g

Packaging
e Eight pins and dual inline package (DIP) integrated circuit or a chip.

e 741 is the designation of a general purpose operational amplifier by
many manufacturers.
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10.4.11 Pin configuration (pin-out)

Metal Can Package
NC

Inverting Input (2) } (6) Output
Non-Inverting Input Offset Null
V TL/H/8341-2

Order Number LM741H, LM741AH, LM741CH or LM741EH
See NS Package Number HO8C

Dual-in-Line or 5.0. Package

Top view
v
Offset Null 1 81 NC
Inverting Input 2 71 v,
Non-Inverting Input 3 6 Output
v 4 5 | Offset Null

TL/H/8341-3

Order Number LM741], LM741A], LM741CJ, LM741CM, LM741CN or LM741EN
See NS Package Number JO8A, MO8A or NOSE

e One indentation or spot

e The pins are numbered counterclockwise
e Pin 2: Inverting input (—)

e Pin 3: Non-inverting input (+)

e Pin 4: External power supply (—15V)

e Pin 7: External power supply (15V)

e Pin 6: The operational amplifier output

e Pins 1, 5 and 8: Not normally used, no connections are required
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10.5 Inverting amplifier

Vout

An inverting amplifier inverts and amplifies the input voltage.

e [t is constructed by connecting two external resistors to an operational
amplifier.

e This circuit inverts and amplifies the input voltage.
e The resistor Rr forms the feedback loop.

— The loop always goes from the output to the inverting input of
the operational amplifier, so the feedback loop is negative.
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10.5.1 Equivalent circuit

RF Iout
VWV
Iin R c rooTTTTTmT e
— I '
N VWV - : Vot
Vin i + i
— -_— i Vout i

ideal model

At node C:
Iin = —dout, ‘/c =0

Where:

e [, is the input current
e [, is the output current

e V, is the voltage at node C'

Since no current flow into inputs of the operational amplifier, voltage across
the resistor R is V;,, — V. = V},, from Ohm’s law:

Vin = IinR
Where:
e V1, is the input voltage
e [;, is the input current
e R is the resistance of the resistor R
Voltage across the resistor Rp is Vyut — Ve = Vi, from Ohm’s law:

V:)ut = outRF = _IinRF
Vout _ _@
Vin R

Where:

Vout is the output voltage

Vin is the input voltage

Rp is the resistance of resistor Rp

R is the resistance of resistor R
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10.5.2 Characteristics

e The voltage gain of the amplifier is determined simply by the external
resistors Rr and R.

e The voltage gain of the amplifier is always negative.

e An example of an inverting (—) amplifier:

F

Vin

|
|

Vout j

-
v

10.6 Non-inverting amplifier

A non-inverting amplifier amplifies the input voltage without inverting the
signal.
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10.6.1 Equivalent circuit

[ - ____
R, T |
I
_|__,\N\/ I \ I
V,
— i + gl : out
I
+ | Vout |
Vin | — :
| - I
— ]
At node C:

Ve= ‘/ina Vin = *IinR’ Iin +Iout =0
Voltage across Rp:

Vout = lowt RE + Vig
. Vout o Lot Rp + Vin
“Vin  —LnR
IoutRF - Ian
T
—linRp — IinR
—IinR
Rp

=1+ =
+R

10.6.2 Summary

e A non-inverting amplifier amplifies the input without inverting the
signal.

e It has a positive gain greater than or equal to 1.
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10.7 Summer amplifier

21 WV 9 WV
R1 RF
v, A\/V\/ P -
R, Vout
Vy VVV . +
Rp
V;)u 7V
tN RN N
Rp
Vou =——V
t1l Rl 1
Rp
‘/ou =-——V
t2 R2 2
Rp Rp Rp
Vout = —W — Vs V;
t <R1 1-|-R2 2+RN N>

v, R, O Ve
— /

Vi Vo Vow

Ry "Ry  Rp

e The summer amplifier is also known as the adder.

e It adds another analogue signal.

e The output is the negative sum of the inputs.
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10.8 Difference amplifier

A difference amplifier circuit is used to subtract analogue signals.

RF
VWV
Vi Ry
~ >
I WV ) L o
— k2

Vi—LiRy=Vo— 1Ry = IhRFp
Vout = _IlRF - IlRl + ‘/1

Hence:
Va Vi Vo Rp
L= ——— n=--_-—2_2F
Rr + Rs Ry Rr+ R Ry
o: V V- R
Vour =Vi — (Rp + R 1—2F>
te=Vi—(Br+ ”(Rl Re+ Ra Ry
If Ry = Ry =R,
Vour = £ (1 — 1)
out — Rl 2 1
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10.9 Integrator

The integrator circuit is created by replacing the feedback resistor of the
inverting operation amplifier circuit with a capacitor.

C Iaut
] |
mn
Vout
Iin R
W > ;
Vin i out
L
d%ut _ Iout _ _IL _ _V;n
a4~ C ~ C  RC

So: .
1
Vout(t) = _RC/O Vm(T) dr

10.9.1 Practical integrator

i

d ‘/out ‘/out o ‘/zn

Vout

C — dout — *Iin n—
dt R, t Ry
So: v, 1 1
out o -
dt +CRS‘/OM_ Rlc‘/;n
Should choose:
RiR;

R.> 10Ry,  Ry— ——fts
s 2= "R+ R.

The reason is Ry is an approximation of the parallel combination of R; and
R, to minimise the DC offset due to the input current bias.
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10.10 Differentiator

The input resistor of the inverting operational amplifier circuit is replaced
by a capacitor to form a differentiator circuit.

R

Wy

+
V,

dV; o Lin, Tout o Vout

i C  C  RC

So:
av;

V;m =—-RC
! dt
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10.11 Sample and hold circuit

1. Tt is extensively used in analogue-to-digital conversion.

2. Its signal value must be stabilised while it is converted to a digital
representation.

3. It consists of voltage-holding capacitor and a voltage follower.

4. Tt works while the switch is closed.

\5
A \
V Vout
in /
—

When switch S is closed:
‘/out (t) - ‘/z (t)

V;mt (t - tsampled) - V;n (tsampled)

The capacitor C' should be one with low leakage.
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10.12 Comparator

e A comparator is used to determine whether one signal is greater than
another.

e The comparator is an example of an operational amplifier circuit where
there is no negative feedback and the circuit exhibits infinite gain.

e The result is that the operational amplifier saturates.

e Saturation means that the output remains at its most positive or most
negative output value.

+

+ Vous

Vre f

V. — +Vsat, Vin > V;"ef
ot _Vsah Vin < ‘/ref

Where:

e V. is the saturation voltage of the comparator. Most comparators
are specially built.
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10.13 Instrumentation amplifier

e An instrumentation amplifier is used for subtracting analogue signals.

e [t does not invert the signal, like a non-inverting amplifier.

" Oo—} Vs "y
_ R; R,
—— AW
R —
111 SRR - >——OV,u
C—AMWW——
Ry

The left side:

The right side:

Where:

vV, O I> v, V¥ ’i.’ Rs

V3 —Vi=1LRs
Vo= Vi=15LRy
Vi—-Vo=9LR

V3 —I3R3 = V4 — I4R3 = I4R5
Vour = —I3R4 — I3R3 + V3

e [3 is the current through Rj

e [, is the current through R4
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V3=<R2+1>V1—R2v2

Ry Ry

Ry Ry

Vi= (2 4+1) - 2w
4 (Rl > 2 Rll
R5(R R R
Vy = Ballls b Ba)y o Fay,

R3(R3 + Rs) R3
If R4 = Ry, then:

Ry Ry
Vowr | — 1 +2- — Vo —V;
t[Rs( + R1>](2 1)

So if Vi = Vb, then V,,; = 0. In practice, we need a variable resistor Ro to
tune such that Ry = Rs.
10.13.1 Why use instrumentation amplifiers?

o A difference amplifier may be satisfactory for low-impedance source,
but its input impedance is too low for high-output impedance source.

e [f the levels of the input signals are very low and the signals include
noise, the difference amplifier is unable to extract a satisfactory differ-
ence signal.

e The instrumentation amplifier is a solution for this problem.
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10.13.2 Characteristics

11

The instrumentation amplifier has very high input impedance.

Large common mode rejection ratio (CMRR), which is the ratio of the
difference mode gain to the common mode gain.

The difference mode gain is the amplification factor for the difference
between the input signals.

The common mode gain is the amplification factor for the average of
the input signals.

For an ideal difference amplifier, the common mode gain is 0, implying
an infinite common mode rejection ratio.

It is desirable to minimise the common mode gain to suppress signals
such as noise that are common to both inputs.

The instrumentation amplifier also has the capability to amplify low-
level signals in a noisy environment, which is often a requirement in
applications with differential output and signal conditioning.

It also has a consistent bandwidth over a large range of gains.

Analogue-to-digital (A /D) conversion

11.1 Data acquisition (DAQ) devices

Data acquisition (DAQ) products with sensors

Sensor DAQ Device Computer

& S | |

- Signal Analog-to-Digital Driver Application
Conditioning Converter Software Software
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11.1.1 Flow chart

Sensor

!

DAQ device

I

Computer bus

l

Computer

I

Driver software

0

Application software

I

Data storage format

0

Analysis tools

I

Visualisation tools

l

Reporting tools

11.1.2 Examples

Sensor Phenomenon
Thermocouple, thermistor Temperature
Photo sensor Light
Microphone Sound

Strain gage, piezoelectric transducer
Potentiometer, optical encoder
Accelerometer

pH electrode
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Force and pressure
Position and displacement
Acceleration
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11.2 A/D conversion

_,//\.,

Buffer

Sensor o
amplifier

H

1. Buffer amplifier

e [solates the output from the input.

.

Low pass filter

Sample
& hold

0011 0010 0100
0011 0010 1011
0011 0011 1100
= 0011 0101 0111

A/D
converter

Computer/
memory

e Provides a signal in a range close to but not
input voltage range of the A/D converter.

2. Low pass filter

exceeding the full

e Necessary to remove any undesirable high-frequency components
in the signal that could produce aliasing.

e The cut-off frequency of the low-pass filter is less than half of the
sampling rate.

3. Sample and hold amplifier

e This amplifier maintains a fixed input value from an instantaneous
sample during the short conversion time of the A/D converter.

4. A/D converter

e The converter should have a resolution and analogue quantisation

size appropriate for the system and the signal.

ot

. Computer and memory

e The computer must properly interface with the A/D converter

system to store and process the data.

e It also needs to have sufficient memory and storage to store the

data.
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11.2.1 Definition

e An electronic integrated circuit which transforms a signal from ana-
logue (continuous) to digital (discrete) form.

e Analogue signals are directly measurable quantities.
e Digital signals only have two states. For the digital computer, we refer
to the binary states: 0 and 1.
11.2.2 Why do we need analogue-to-digital conversion?

e Microprocessors can only perform complex processing on digitised sig-
nals.

e When signals are in digital form, they are less susceptible to the dele-
terious effects of additive noise.

e A/D conversion provides a link between the analogue world of trans-
ducers and the digital world of signal processing and data handling.

11.3 A/D conversion process

Step 1 Step 2
oot 1
i i
T L —— .
uantisin o
U(t) @iy .\Q ! & 9 °
i So¢ L 1 Vi® | Encoding b,
T —
i i
: 1
i i
1

E P Output digital signal

2. Quantising and encoding (Q/E)

Input analog signal L

1. Sampling and holding (S/H)
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11.3.1 Sampling and holding

Via

Continuous signal

» Sampling pulse

=
]
[,
w
o
-

Sampled signal

A T N S I N , Sampled and
0t & ts t &t held signal

e Holding the signal benefits the accuracy of the A/D conversion.

e The minimum sampling rate should be at least twice the highest data
frequency of the analogue signal.
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11.3.2 Resolution

e The resolution is the smallest change in the analogue signal that will
result in a change to the digital output.

V;“ef

AV =
V on

Where:

— AV is the resolution

— n is the number of bits in the digital output
— 2" is the number of states

— Vi is the reference voltage range

e The resolution represents the quantisation error inherent in the con-
version of the signal to digital form.
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11.3.3 Quantising and encoding

e Quantising refers to partitioning the reference signal range into a num-
ber of discrete quanta, then matching the input signal to the correct
quantum.

e Encoding refers to assigning a unique digital code to each quantum,
then allocating the digital code to the input signal.

Analog signal Digital Output in binary
7.5

e }—>7A=7V—>111
6.5 ——
| . }_.5,5:6]/—>110

55 ——

-5 }—*5A=5V—"101
45 —

- 4 }—>4A=4-V—>100
3.5 ———

- 3 }—>3&23V—»011
25 ——

- 2 }—>2A=2V—*010
1.5 ———

-1 }—>1A:1V—>001
0.5

-0 }—>0A=0V—'000
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11.3.4 Ways to improve the accuracy of the A/D conversion

1. Increase the resolution, which improves the accuracy in measuring the
amplitude of the analogue signal.

2. Increasing the sampling rate, which increases the maximum frequency
that can be measured.

Low Accuracy Improved Accuracy

Resolution
Resolution

|

[ [ [ [ T R A A IO I R B A
Time Time

11.3.5 Advantages of A/D conversion

e A digital signal is superior to an analogue signal, as it is more robust
to noise and can easily be recovered, corrected and amplified.

e For this reason, most analogue signals will be changed to their digital
forms.

11.3.6 Applications of A/D conversion

e Analogue-to-digital converters are used virtually everywhere where an
analogue signal has to be processed, stored, or transported in digital
form.

e Some examples include:

— Cell phones
— Thermocouples
— Digital oscilloscopes

— Digital voltmeters
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11.3.7 Time taken for the A/D conversion
e The setting time depends on:

— The design of the converter.
— The method used for conversion.

— The speed of the components used in the electronic design.

e Because the analogue signal changes continuously, the uncertainty when
the conversion occurs (in the sample time window), causes the corre-
sponding uncertainty in the digital value.

e This is of particular concern if there is no sample and hold amplifier
on the analogue-to-digital input.

11.3.8 Aperture time

e The aperture time refers to the duration of the time between each
reading of the analogue-to-digital converter.

e [t is associated with any error in the digital output due to changes in
the input during this time.

e The relationship between the aperture time and the uncertainty in the
input amplitude is shown below:

1

V(1) AV

1

—_—| AT, |¢=—

During the aperture time, the input signal changes by AV (t), where:

_ V)

AV() = —

AT,
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11.4 A/D converters

Design principles of A/D converters

1
2
3
4
5

Successive approximation.

Flash or parallel encoding.

Single-slope and dual-slope integration.
Switched capacitor.

Delta sigma.

Other principles include:

e Voltage-to-frequency.

e Staircase ramp or single slope.

e Charge balancing or redistribution.

e Tracking, synchronising or resolving.

Note that design principles 1 (successive approximation) and 2 (flash or
parallel encoding) occurs the most often.

11.4.1 Successive approximation

1.

A/D converters designed based on successive approximation is very
widely used as it is relatively fast and cheap.

. A successive approximation A/D converter uses a digital-to-analogue

(D/A) converter in a feedback loop.

When the start signal is sent, the sample and hold (S & H) amplifier
latches the analogue input.

. The control unit begins an iterative process, where the digital value is

approximated, converted to an analogue value with the D/A converter,
and compared to the analogue input with the comparator.

When the D/A output equals the analogue input, the end signal is set
by the control unit and the correct digital output is available at the
output.
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11.4.2 Successive approximation A /D converter circuit

e The circuit uses an n-bit digital-to-analogue converter to compare the
results from the digital-to-analogue converter and the original analogue
results.

e It uses a successive approximation register (SAR) to supply an approx-
imate digital code to the digital-to-analogue converter of V;,.

e It compares the change in digital output to bring it closer to the input
value.

e The circuit uses closed-loop feedback conversion.

» EOC
Clock — SAR
Dyoq| |Dp—z Dy D,|Dg
Yy yvyy
Vrer DAC
Comparator

+
Vin S/H p

Output:

Analog input

b

Time

Digital output

o SO

Time
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11.4.3 Successive approximation pros and cons

Pros Cons

High speed and good reliability For higher resolution successive
approximation, analogue-to-digital
converters will be slower

Medium accuracy compared to | Speed limited to about 5 millisec-
other analogue-to-digital converter | onds per sample.

types.

Good tradeoff between speed and
cost.

Capable of yielding the binary num-
ber in a serial format (one bit at a
time).

11.4.4 Successive approximation flow chart

Start :I Control Unit |—> .End
signal | signal

\4

Analog s ) A 4 Digital
; uccessive _ igita
input Comparator Approximation < —>ou9c o
Register P
DAC |«
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11.4.5 A/D converter flow chart

Turning on the most significant bit (MSB) of the
register;
Leaving all lesser bits at 0

k4
I The comparator tests the DAC output against

Turning on the next most significant bit the analog input

(MSB) of the register;
Leaving all lesser bits at 0

The analog input exceeds
the DAC output?

EOC

All n steps
complete?

YES YES

Itis reset to 0

The MSB is left on (high)

11.4.6 Example of a 4-bits A/D converter

FS
1/2FS (1/4+1/8+1/16)
(1/4+1/8) FS Fs
Inputsignal p === == === == =f= = = = — — o |
1/4FS
0 1 1 0
0
3(MSB) 2 1 0(LSB)
bit

The digital result 0110. A higher resolution will produce more accurate
results.
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11.4.7 Conversion time

e An n-bit successive approximation A/D converter has a conversion
time of nAT, where AT is the cycle time of the digital-to-analogue
converter and the control unit.

e The typical conversion time for 8, 10, or 12-bit successive approxima-
tion A/D converters ranges from 1 to 100 ps

11.4.8 Example of a 10-bit A/D converter
e Number of bits: n = 10
e Voltage input: V;;, = 0.6V

e Reference voltage: Viep =1V

Bit Voltage
9 0.5
8 0.25
7 0.125
6 0.0625
5 0.03125
4
3
2
1
0

0.015625
0.0078125
0.00390625
0.001952125
0.0009765625

Number of possible states: N = 2" = 1024

Vmaa: - Vmin

Resolution: AV =
esolution ~

Y
1024
= 0.0009765625 X Ve
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11.4.9 Process of calculating the most significant bit (bit 9)

V're
5L =0.5.

1. Divide V;.cf by 2, V =
2. Compare V with Vj,.

3. If Vj,, is greater than V| turn the most significant bit (MSB) on (set
to 1).

4. If Viy, is less than V, turn the most significant bit off (set to 0).
5 Vip =06V and V = 0.5.
6. Since V;, >V, MSB =1

| MSB | MSB-1 | MSB-2 | MSB-3 | | | | | | |

1

11.4.10 Process of calculating the most significant bit - 1 (bit 8)

1LV =Yt 4 Vel — 0540.25=0.75V,

2. Compare V;, to V.

3. Since 0.6 < 0.75, the current most significant bit is turned off (set to
0).

| MSB | MSB-1 | MSB-2 | MSB-3 | | | | | | |

110
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11.4.11 Process of calculating the most significant bit - 2 (bit 7)

1. Go back to the last voltage that caused it to be turned on (bit 9) and
: Vref
add it to —g*.

2. Hence, V = 5L 4+ Yl = 0.5 4 0.125 = 0.625 V

3. Since 0.6 < 0.625, the current most significant bit is turned off (set to
0).

| MSB | MSB-1 | MSB-2 | MSB-3 l | | | | | |

1100

11.4.12 Process of calculating the most significant bit - 3 (bit 6)

1. Go back to the last voltage that caused it to be turned on (bit 9) and

. V'ref
add it to T

Vi

2. Hence, V = ;f + Y

L = 0.5 + 0.06250.5625 V

3. Since 0.6 > 0.5625, the current most significant bit is turned on (set
to 1).

| MSB | MSB-1 | MSB-2 | MSB-3 | | | | | | |

1710101

This process continues for all the remaining bits:

| MSB | MSB-1 | MSB-2 | MSB-3 | MSB-4 | MSB-5 | MSB-6 | MSB-7 | MSB-8 | LSB |

170/0(17{1/0]0/1]1,0

Results: 1 1 1 1 1
3 4 G + D) + %6 + R =0.599609375V
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11.5 Flash A/D converters

Has N — 1 comparators.

Has N resistors.

7]
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11.5

.1 How does it work?

It uses the N resistors to form a ladder voltage divider, which divides
the reference voltage into N equal intervals.

It uses the N —1 comparators to determine in which of these N voltage
intervals the input voltage V;, lies.

The combination logic then translates the information provided by the
output of the comparators.

This analogue-to-digital converter does not require a clock, so the con-
version time is set by the settling time of the comparators and the
propagation time of the combinational logic.



11.5.2 Pros and cons of flash A/D converters

Pros Cons

Very fast. Expensive.

Very simple operational theory. Prone to produce glitches in the
output.

Speed is only limited by gate and | Each additional bit of resolution re-

comparator propagation delay. quires twice the comparators.

11.5.3 Characteristics

e The fastest type of analogue-to-digital converter.

e [t consists of a bank of input comparators acting in parallel to identify

the signal level.

e The figure below shows a 2-bit converter with a resolution for output

states.

e The output of the latches is in a coded form, which is easily converted
to the required binary output with combinational logic.

|24

max

=
B

R

©  trigger

VY

G,
D
o— C B
G'I
= C
Gy Bg
D
code
e— C converter

comparators

latches
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11.5.4 Output of a 2-bit flash converter

Voax @ @ Vin Q  trigger

N G,
(‘9—/ b Q
R é & C B
\ G,
(9—/ D Q
R é o C
R Gy F Bo
BT
\ code
R e— C converter
latches
Vinin comparators

State ‘ Code (G Gy Gy) ‘ Binary (B; By) ‘ Voltage Range

0 000 00]0-1
1 001 01 11-2
2 011 10 2-3
3 111 11| 3-4

This assumes:
e An input voltage range of 0 to 4V.
e The voltage rage is set by the Vi, and Viaz.
e The code converter is a simple combinational logic circuit.

e For a 2-bit converter, the relationship between the code bit G; and the
binary bits B; are: o
Vo =Go-G1+ Gy

By =Gy
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11.6 Dual slope converters

Components:
e Integrator
e Electronically controlled switches

Counter

Clock

Control logic

Comparators

Resistor

Capacitor

Zero Detector
5 Control
Logic
Start Stop
Clock Counter |—— Bk
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11.7 Sigma-delta A /D converters

Components:

Resistors
Capacitor
Comparators
Control logic

Digital-to-analogue converter

Q

Output

Kl

11.7.1 How does it work?

The input is over sampled and goes to the integrator.
The integration is then compared to the ground.
It then iterates and produces a serial bit stream.

The output is a serial bit stream with the number of 1’s proportional
the Vj,.

With this arrangement, the sigma-delta modulator automatically ad-
justs its output to ensure that the average error at the quantiser output
is zero.

The integrator value is the sum of all past values of the error. Hence,
whenever there is a non-zero error value, the integrator value just keeps
building until the error is once again forced to zero.
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11.7.2 Pros and cons of sigma-delta A /D converters

Pros ‘ Cons
High resolution Slow due to over sampling
No need for precision components | Only good for low bandwidth

11.8 Comparison of different types of A/D converters

ADC Resolution Comparison

Dual-Slope

Flash

Successive Approx

Sigma-Delta
0 5 10 15 20 25
Resolution (Bits)

Type ‘ Speed (Relative) ‘ Cost (relative)
Dual-slope Slow Medium

Flash Very fast High

Successive approximation | Medium fast Low

Sigma-delta Slow Low

e Adding more resolution is a simple matter of adding more resistors,
comparators and latches.

e The combinational logic code converter would also be different.
e Unlike with the successive approximation converter, adding resolution
does not increase the time required for a conversion.
11.9 Digital-to-analogue (D/A) conversion

e It is to reverse the process of A/D conversion by changing a digital
value to an analogue voltage.

e Digital-to-analogue conversion allows a computer to interface with ex-
ternal analogue circuits and devices.
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11.9.1 Example of a D/A converter

Playing back the digital sound file

011700011101—»&1’3%& —\{V/Wt/\/
)

Steam of zeros and ones Computer Waveform
(digital sound) Sound Card (analogue sound)

Samples (bytes) are clocked into D-to-A converter at sampling rate to reproduce

original pitch.
8 mvolts
1
i 4 mvolts
i -0
1
i I 2mvolts
: i
1 1 1
| H i 1 mvolt
i ! i
i i i =
| 0 | 1 | 0 | 1 | A “1"in register closes gate, adds value to the total

1 byte in register = 5 mvolts

11.9.2 Problems with D/A conversion

e Finite word length.

— Most systems today do 16-bit digitising.
— Hence, there are 65536 different levels.

e The loudest sounds need room, so the normal sounds don’t make use
of the entire range.

— Problems occur at low levels where sounds are represented by only
one or two bits, which results in a lot of distortion.

e Dithering adds low level broadband noise.
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11.10 D/A conversions
11.10.1 How to do D/A conversions?

The simplest type of D/A converter is a resistor ladder network connected to
an inverting summer operational amplitude circuit. Below is a 4-bit R — 2R
resistor ladder network which requires only two precision resistance values
R and 2R.

Note:

e The digital input to the digital-to-analogue converter is a 4-bit binary
number represented by bits By, By, By, and Bs.

e By is the least significant bit and Bj is the most significant bit.

e Each bit in the circuit controls a switch between the ground and the
inverting input of the operational amplifier.

N

Least
significant

MSB LSB bit
0
Most R
significant — = = —
bit
; v,
+ out
L
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11.10.2 When By of the D/A converter is 0001

By is the least significant bit. If the bit number is 0001, then the By switch
connects to the operational amplifier, while the others are grounded.

Since the inverting operational amplifier is grounded, we have:

1
%uto = _5%
1 1 1 1
‘/0_5‘/17 Vl_i‘/éa ‘/2_5‘/3—5‘/;
So:

Vity = — V.
outg — 16 s

1 1 1

Vout, = —gvs, Vout, = _ZVS’ Vouts = _§Vs

Total output:

n—1
V;mt = g Bi‘/outi
=0
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12 1st order systems
In general, the time response of a first order system is:
z(t) =a+ be™ T
Where:
e 1 is the response of the system
e { is the time

e ¢ and b are arbitrary constants to be determined

e 7 is the time constant
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12.1 Example

thermometer
at
temperature
Ts
heat
body
at
temperature
Th
Thermal measurements:
e Heat:
o Ty —Ts
1= 7R
Where:
— R is the thermal resistance
e Change in heat:
dls  q
a C

Where:
— q is the heat
— (' is the thermal capacitance
dT; )
o If 72 =0: t
Ts(t) = TsO + (Tb - TSO)(l - e_ﬁ)

154



12.2 General (forced) equation

do(t) | a(t) _
AL

z(0) = xo
Where:
e 7 is the time constant
e f(t) is the forced input

e 1 is the initial condition

12.3 Natural (unforced) equation
de(t) + .%'N(t)

=0
dt T
z(0) = xo
xn(t) = zoe" T

Satisfying the initial conditions:

Where:
e 7 is the time constant
e f(t) is the forced input

e 1 is the initial condition
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12.4 Time constant

1
0.8

N\
w(t) |1\

X0
0.2 o~
N ~—
0 1 2
t/T
12.4.1 RC circuits
R
ve(t) C
_VQ_

Where:
e R is the resistance of the resistor
e (' is the capacitance of the capacitor
e V is the voltage

I is the current

@ is the total charge

t is the time
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12.4.2 RL circuits

Where:

R
MWW

i (0

N\

P

:

7|

| <
<I~

e R is the resistance of the resistor

L is the inductance of the inductor

V' is the voltage
I is the current

t is the time
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12.5 Response to DC forcing inputs

Given: 21 0
T x
) _m
dt + T 0
x(0) = xg
Where:
f(t) = Fo

Looking for a particular (forced) solution xp(t), and considering a DC
steady-state solution:
drgé xs9
dt + T

TS _ p
-— — 40

Fy

rgs = FoT = Too
Determining a general solution:

e Including the natural solution:
2(t) = an(t) + 255(t) = Ke 7 + 2o
e Satisfying the initial condition:

z(0) = K + zoo = o
Hence, the general solution is:

x(t) = (zo — :coo)e_% + Zoo
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12.6 2nd order systems

an ideal ruler
to measure

x(t) =

force g

N =

mass }g

m —

spring damper §
CE T E
P x’??;

We can indirectly estimate the force from a displacement measurement:

e Dynamic equations:
F=mi+bx+kx

e Frequency response:

X k!
SO
Boo-Grantt
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12.6.1 Frequency response

N
| X/F|

~Q

]
i
1
i
]
1
i
! ~
; -~
)
Mo freq
X k1
e . =
F —%(2) + Dwo +1
e Resonance:
gk
T m
e Mechanical Q:
km
2 PR
@ = b

When @ = 0.5, the system is critically damped.
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12.6.2 Time response

c(t) k

Allowable tolerance

4

0.5 ===~

e Rise time
e Settling time

e Overshoot
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13 Measuring temperature
13.1 Temperature scales
C=K-273.15
F=18-C+32
Where:
e (' is the temperature in degree Celsius
e K is the temperature in Kelvin
e [ is the temperature in degree Fahrenheit
These temperature scales are based on:

e Fixed-points, such as the temperatures at phase transitions, triple
points, etc.

e Size of the degree, such as 1(1)—0 of the difference between icy and boiling
water.

e Interpolation in between fixed points, like does 50 °C correspond to the
level of mercury which is halfway between the 0°C and 100 °C levels?

Temperature scales are standardised using the I'T'S-90 standard.
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13.2 Bimetallic thermometers

e Makes use of differential thermal expansion of different metals.

— Metal A and B bonded at temperature T1.

— Bending occurs at different temperatures.

ﬂ

coLo
FIXED
END
/ THIS METAL HAS GREATER
COEFFICIENT OF LINEAR

EXPANSION

HOT

THIS METAL HAS
SMALLER COEFFICIENT
OF LINEAR EXPANSION

e Furnace thermostat, which makes uses of a switch to control the tem-
perature.

Bimetallic Strip

©2001 HowStuffWorks
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13.3 Resistance temperature detectors (RTD)

e Resistance temperature detectors are based on changes of resistance
with temperature.

— Usually, they are a metal wire on insulating support, which
eliminates mechanical strain.

— They are also encased, to minimise the influence from the envi-
ronment, such as corrosion.

Thick Film Omega Film Element

Glass sealed Biflar Winding

Typical RTD Probes Thin Film Omega TFD Element
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13.3.1 Linearity range

e For a given material, a linear relationship can be assumed for a limited

range.

R
— =1 T - T
RO +a( 0)

Where:

— R is the resistance at temperature T’
— Ry is the resistance at temperature Tj

— « is the temperature coefficient
e For platinum:

— +0.3% over the range 0 — 200°C
— +1.2% over the range 200 — 800 °C

5 Mickel Copper

Platinum

400 1000°C
32 762 1832°F

Relative Resistance (R/Rp)

Temperature (T)
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13.3.2 Wheatstone bridge

Rs R,

e Bridge equations:

V+ Ry

Vi  Ri+ R

V- Ry

V,  Rs+ Ry
Vo Ry Ry

Vi Ri+Rs Rs+Ry

e Bridge balance condition:

Vo=0 < RiR4= RoRj3
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13.3.3 Numerical example

Ro Ry

R, RTD

e An RTD forms one arm of an equal-arm Wheatstone bridge:

Ry =Ry =259

At 0°C, RTD = 259 and a = 0.003925°C~*

e [f the R3 required to balance the bridge is 37.36 €2, find the temperature
of the RTD.

e Solution using the bridge-balance condition:
Ro+* RTD =Ry x Ry
RTD = Ry = 37.36 %
For fBID =1 + o(T — Tp):

37.36 2
252

=1+ 0.003925(T — 0)

T=126°C
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13.3.4 Measurements

e Wheatstone bridge has low resistance (conductors) and is subject to
self-heating.

o Lead-wire effects:

— 2-wires:

RO R1

»

Long wires are also subject to temperature-resistance changes:

RI'D+2-rg =Ry

— 3-wires:
1 DVM A .
_ © @ c g
B
RTD+ro=R1+ Ry — RTD =R,
— 4-wires:

100 WRTD
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13.4 Thermistors

Thermistors are thermally sensitive resistors.
e They are made of ceramic-like semiconductors.
— Ry is much larger than RTD.
e The resistance decreases rapidly with temperature.

— High-sensitivity
— Ruggedness

— Fast time-response

1 1
R = Ry’ (+-)
Where:
e R is the current resistance

e Ry is the initial resistance

[ is the material constant

T is the current temperature in Kelvin (K)

Tp is the initial temperature in Kelvin (K)

8

\ highly nonlinear
but well modeled

6

R?'»

RTD

Thermistor

<20 10 0 10 20 30 40 50 60 70 80 90 100
Temperature (*C)
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13.4.1 Examples

: ! = Thermistor in
Thermistors in Ceramic like Probe Housing

Semiconductor 3
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14 Measuring displacement (resistive sensors)

14.1 Resistive sensors

e Potentiometer, also known as a "pot".
— 3-terminal electromechanical device based on a conductive wiper
sliding against a fixed, resistive element.

— Many varieties of varying qualities and for different functions.
Some examples include rheostats, trimmers, volume control, etc.

— Precision potentiometers, which are manually or digitally tun-
able.

Resistive
element

| *DD

. Emm—]
TERMINALA \ 3-TO-8 3-BIT
l‘\ b DECODER [ DIGITAL
R INPUT
W =
" :
Shaft seal X =
un?! b‘::rlng ‘\ — \—‘ TO
Shaft R
@ POLYSILICON SWITCHES N
OR THIN FILM © WIPER (W)
Shaft seal RESISTOR R
Wi ®
Dead-zone "\ e STRING -
! Housing
N cMoS FOR N-BITS:
Reslstive —o \_ 2N swITCHES
element SWITCHES
R AND RESISTORS
R . from
TEI':;INALB : ANALOG
o DEVICES
®) [Vss
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14.1.1 Using potentiometers in electrical circuits

e Voltage divider

End terminal Vo /Uy
7 Full-scale output

1|
'
=]
5
3
. /Vfal
\'r-j &
Output (%)
Max. displacemen

x/xp

[=]

' Displacement (%)
(a) (b)

e Variable resistance

4|

tunable filters variable gain amplifier

Wheatstone bridge
with adjustable offset
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15 Measuring forces through displacement

Force sensors.

15.1 Strain gauges

Force measurements are always made indirectly via deformations.

FORCE

Stram gauge #1

Strain gauge #2

Bridge unbalanced - "~ Resistance measured
[ between these points

/1 L -

Half-bridge strain gauge circuit

strain gavge
(stressed

Phidgets Micro Load Cell (0-780g)
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15.2 Piezo-resistive force sensor

Voltage [V]

[ —

sensor

weights

hanger

——1st
——2nd
== 3rd

200

400

weight [grams]

174

600

800

i At h
—4=—5th
—8—6th



16 Measuring displacement (inductive sensors)

16.1 Linear variable differential transformer (LVDT)

A linear variable differential transformer is a type of electrical transformer
that measures linear displacement.

e It has variable coupling via sliding ferromagnetic core.

— One primary coil driven by AC, usually in kHz.

— Two secondary coils

e Differential voltage:
Vour = AV = Vo — Vi =~ 2(1)Vj

+
V,=sin (o, t)

|1AV]

' linear range

core displacement o B
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16.1.1 Amplitude modulation

The amplitude of the output voltage is modulated by the physical displace-
ment:

AV = Vpx(t) = sin(wpt) sin(wyt)

LR R LA

Figure 1: Vj = sin(wot)

Modulating Wave

i W
P Y S

Figure 2: z(t) = sin(w,t)

Modulated Result

Figure 3: AV = sin(wypt) sin(wyt)
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16.1.2 Amplitude demodulation

VOB é _AV:VO X(t)
=
$ X(t)

LAV

‘core displacement

Vo = sin(wot)

z(t) = sin(wyt)

sin(wot)

sin(wgt) sin(wot) © } ow | z(t)

pass

4
sin(w,t) sin® (wot)
4
sin(wat) 1- co;(2w0t)

U
sin(t(2wot + wy)) — sin(t(2wp — wy))
4

~
Low frequency Unwanted high frequency, to be filtered out

3 sin(wyt)

177



16.1.3 Amplitude modulation and demodulation
4 Fourier Transforms

......................... My x(t)
| |

_____________ Yo sin(wot)
! —| modulation

z(t) sin(wot)

>
sin(wot)
—| demodulation

|

z(t)

frequency
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17 Measuring displacement (capacitive sensors)

17.1 Principle

e Capacitance definition:

L Q
C=v

e In the ideal case, we have infinite parallel plates.

e Used for proximity sensing.

Gauss’ Law:

7\\‘*’//7

SR

CigieoerEsieoers
V. Ed @ d
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17.1.1 Types of plate movement

=

capacitance

— (] - displacement

moving plate

capacitance

fixed plate displacement

17.2 Guard electrode
The guard electrode limits field-fringing effects.

VO

guard Vo

(A

O . ®

Area  gody
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17.3 Interfacing with capacitive sensors using AC

e AC bridge:

Process Pre ssure

f
S e [1,=j
f

Reference Pressure

e AC driver circuit:

Ro
W
— I

v, ”j>_

e Envelope demodulator, which is the simplest kind of demodulation for
non-negative signals.

e
nl4 4 "hf‘f,“"\ﬂ“;m”l“'“'-ﬁ'-m.r..

wiit) = [] v,(t)
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18 Proximity sensors

18.1 Hall effect

The Lorentz force is defined as:

S|
Il
<
S
X
o

Null Voltage —

Qutput Voltage (Volts)

_,

Saturation

~—
North Pole

[

_‘

i -

HALL

ELEMENT|— IDIFFERENTIAL
AMPLIFIER

Saturation

OUTPUT

_—
South Pole

Input - Magnetic Field (Gauss)
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18.2 Hall effect sensors

18.2.1 Proximity sensor

Hall effect proximity sensors have a contactless switch.

MAGNETIC FIELD (GAUSS)

G1

G2

o1 D2 DISTANCE

Arrow indicates
direction of magnetic flux

Distance
Motion of
Magnet

18.2.2 Current sensor

Ic (Control Current)

(Hall Voltage)
If (Primary Cu.rrem)

Secondary {

Is
(Secondary Current)

Winding

(Hall Voltage)

lo
(Primary Current) ' (Output Current)
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18.3 Light detectors
18.3.1 Photo-resistors

Evaporated
metal electrodes
Photoresistor Incident
\\. / radiation
Bias _L D_T“N
voltage A TOutput
Lz lvohage F
Photoconducting
material

10 Meg

Resistance vs. lllumination
RESISTANCE - ohms

S

T

iy

0.1

1

10 100

light intensity [lux]

Relative Spectral Response
RELATIVE RESPONSE - %

[T\

\

60

\

40

\

Nl

[
400

184

500

600 700 800 800
WAVELENGTH - nm
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18.3.2 Photo-diodes

e Load resistance

&
&
LOAD LINE WITH REVERSE 8
VOLTAGE APPLIED
Ve, ‘, VOLTAGE
xG GxloxRi \< HIGH LOAD LINE
o ’\ 3 o L
LIGHT
R 3 N /
F———__ LOW LOAD LINE
< O
e Operational amplifier circuit
- Rf
[ AAA
Isc |
LIGHT . : - (Iscx Ri)
R +
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18.3.3 Photo-transistors

CHOUZSS X T r
Ic Ry Ie _\“\'—éy/ "P""--‘-‘ Sma
Tore 50| 4N mall N of /]t -
8 4 mA
80 | i A 1
1 A § /} ’/ .
" \* i / . 3 mA
X s 1 |
" W ) T ffscho :
\\1\\ / \\\ ! 2 mA
b = 1
. SNENE I /e |
| e I\ T sl kO [N 1A
S 0.5mA T
I
) 4 ] 8 10

e Transmissive type:

— Photo-interrupter

.l Ot

Ry
It Vee
—> /cl
Output
:j §

— Current-voltage operational amplifier

=
B
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19 Digital encoders

e Digital encoders convert either linear or rotary motion into a sequence
of digital pulses.

e They are made using optical transmitter and receiver pairs, with a
glass or plastic material photographically patterned.

=B

Stationary
mask

|
l‘mwmwwll Rotating k
codewheel

e Alternatively, they can also make use of hall effect sensors that are
coupled with magnetic rings and bars.
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19.1 Absolute encoders

10 LIGHT
SOURCES

[—h [eecsnanca-"g

—— p Sy

AEARINGS:

10 LIGHT
DETECTORS
-~
INJERFACE
+ ELECTRONIGS

16 BIT ABSOLUTE
POSITION OUTPUT

ENCODER SHAFT |

There are n TX and RX pairs for coding 2™ sectors.

Angular n-bits encoders have a resolution of

360°
271

They are more expensive, as they require n TX and RX pairs.

e Spurious states may arise from contemporary transitions.

desired spurious
states state!!!

: y fixed
bitl i spurious sonsars
_— state!!!
/ _L bit 3(MSB) (]
bit1 | s L b2 [
T D
—q Brose)[]
bit2 i 360
IS4

degrees Sogbss

e Gray code can be used instead of natural binary code to ensure that
there are no contemporary transitions.
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19.2 Incremental encoders

Shaft

Rotating
codewheel AU

J ) s (7—*0 @

e Incremental encoders have a simpler design.

reset

— A single pair of TX and RX is insufficient to encode the direction.
— Hence, 2 TX and RX pairs plus a "reset" position are required.

e The signals are quadrature, which means the signals are 1 cycle out-

4
of-phase.
reset
AL L] L L
3 e N O R R R e
n-bit n bi
cw ﬂ counter | oluntapr:t
cw—> up
CCW rL rL ccw—> down
time
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20 DC Motors

20.1 Structure and fields

e Stator is the external magnet, which is fixed.

e Rotor is the internal magnet, which rotates.

e The stator field and the rotor fields are always orthogonal to produce
the maximum torque.
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20.2 Commutation

When torque T' = 0, the motor is in equilibrium.

20.2.1 With commutation

unstable equilibria

191
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20.2.2 Without commutation

AT stable equilibrium

/s
N

unstable equilibria
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20.3 Generated torque

Brush

Commutato

The larger the number of poles, the more constant the torque, which means
the torque produced by the motor is more independent of the rotor position.
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20.4 3-pole DC motor

I
|
|

N

\

)

|
1
1
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20.5 Equations

e Armature equation

di
V=R, + dt—l—e

e Mechanical equation
Juo+bw=T,—Ty

e Electro-mechanical coupling
T, = Kyi
e=Kew

Tw=ei <+ K. =k2K,
Where:

e V is the voltage

e R is the resistance

e [ is the inductance of the circuit

e ¢ is the electromotive force

e J is the radius of the motor

e w is the angular velocity

e T, is the load torque

e 17 is the electromagnetic torque

e K, is the armature constant
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20.6 DC motor equivalent electrical circuit
e Let:

— Voltage be an analogue of torque.

— Current be an analogue of speed.
e Then:

— Inductance is an analogue of inertia.
— Resistance is an analogue of damping.
— Capacitance is an analogue of compliance.

— Electrical power VI is an analogue of mechanical power Tw.

e Note that a mechanical parallel is an analogue of the electrical

series.

V 1 iTL
1 Rm I'm Jm Bm I
I + i
. |m € +Te w .
I [
| I
! - - |
1 1
e o e ot e h o s s s s mm r mm s = = = s = s s -

Yavavd

Figure 4: DC motor equivalent electromechanical model.
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20.7 Steady state speed torque curve
V=Ri+1L K,
1+ /% + Kqw

%+bw+TL:Kai

@

V—Kaw:Ri
1

K,V — K*w = Rbw + RTy,

d
SrA)uee/ru:)-load speed

K,V )
w= RT, Rb+ K,
KWV VvV
wo = oL 1 o
Rb+ K? K,
oy, . 1%
Ling Ts=Keg
Yoy R
~ aé’e,,} stall
7 Aoy . torque
/”7@

197
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20.7.1 Load lines
Loads can be of various kinds, such as:
e Friction: Ty, = brw

e Constant torque: T, = const

e Inertial: Ty, =1 = %“; = 0 @ Steady state
e Nonlinear: 77, = f(w)

OP is the operating point in the diagram below.

speed 4
constant

®
0 torque
linear friction

W,

\)P

~| L . . .

”><::T"‘\\\\\\op nonlinear friction
~ L

S~ o - <o \ Ioad‘torque

Ts
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20.8 Common types of load

1. Constant torque:
T]EI) = mgr

@Dcm%

2. Constant torque with friction:
7% = m 0+b
T =mgrcost+bpv

Téz) = mgrcosf + brwr
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Graph of the common types of loads:

(1)

speed 4

-~

(2)

, i mgr torque
'mgr COS 60
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20.9 Maximum output power

At nominal voltage V:
Poyt = wTy,

The power output is the area in the speed-torque graph. Using a friction
load:
TL = waL

OP is the operating point in the diagram below.

/ .
OPN load torque

\
TS T,

Hence, the maximum output power is:

1
B = ST
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20.10 Maximum efficiency

At nominal voltage V:

power in wTr,

- power out VI

A P A
out
wok® M ————
_-—.\. - \\
> PR S
/ ~. ~ I
. , S, \ S
1 Ve ~,
» / ~ \
| B < \
/ '~ \
Iy ‘o \
-, N \
I N\
0', Ny Ioad‘torque
T
S TL
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20.11 DC motor load matching

1. Figure out the mechanical load of the motor. For a friction load:

T, = brwy
2. Figure out the gear ratio V:

T, = NT,,

wm = Nwy,

3. Use the torque and angular speed to turn it into voltage (V) and
current ([).

You can either design for maximum power or maximum efficiency.
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20.11.1 Types of gears

(4}

(a) Spur gears mesh pairs of gears with different numbers of teeth to
achieve speed reduction.

(b) Planetary gears have several gears meshed in an outer ring for a
large speed reduction.

e (c) Worm gears produce rotary motion at right angles to the shaft.

(d) A lead screw and nut can create linear motion, as can (e) a rack-
and-pinion system, and (f) belt-and-pulley-drives.

20.12 Driving DC motors

e Using power amplifiers to drive DC motors is possible but is typically
avoided.

e This is due to large power dissipation and over-heating of the
amplifier.

e It is preferable to continuously switch the motor on and off using pulse
width modulation (PWM).

voltage

acCross .
DCM off off off time

on on on
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20.13 Pulse width modulation operating principle

The DC motor is in fact a 2nd order low pass filter.

K,V — (R+ Ly)T},
(Ls+ R)(Js+b) + K2

Vvoltage o &1 ,1: S
0---1- — . low pass on i
I_l time )| T p) = VO"TH_ ripple
T - AL
— /
duty-cycle

Frequency analysis:

Vin
T 1‘ A freq
1 2 3
Low Pass T T T
fre
b q
Vout J
T A N N freq
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20.14 Inductive kickback
e There is voltage across the inductor:

di
V=L
dt

o [f the current starts decreasing, the voltage v = vg — v quickly de-
creases.

e Hence, voltage va quickly increases.

flyback / kickback
diode

"‘Vcr:

\
L

() (b) (€)

e (a) The steady-state current through an inductor I,,, cannot immedi-
ately go to 0 at A when the switch is opened. The changing current
induces a voltage across the inductor, making the potential at A greater
than at B, causing the switch or relay to arc over.

e (b) Flyback diodes protect switches from blowing up.

e (c) Transistor switches must be protected in the same manner.
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20.15 Pulse width modulation circuit

PNP PNP

.L
9 q x x

NPN

Transistor MOTOR

KICKBACK
DIODE

DC MOTOR
Input

NEN NPN

Transistor

oy
—r A KICKBACK I
PNP DIODE r'

For the diagrams above, the diagram on the left is a circuit for bidirectional
current flow through a DC motor, and the diagram on the right is a typi-
cal H-bridge circuit, including kickback diodes to protect against inductive
kickback.

PNP ENP PNP PNP
OFF OFI ON

MOTOR MOTOR
P

T o\
HO \ v
NPN NPN NPN NEN
OFF ON ON OFF

]
PNP PNP PNP
OFF . ON ON
NEVER dyna.mlc MOTOR
DO braking |
THAT
NPN

NPN NPN
OFF OFF
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20.16 Brushless DC motors

e A brushless DC motor is similar to a brushed DC motor, but has its
insides out.

e The stator field is rotating instead of remaining static.

e The rotor field is given by a permanent magnet and stays in place.

permanent coils

electrical
magnet : connections

shaft

in this case: 6
(2 per coil)

20.16.1 Driving strategy

To maximise the output torque, try to keep the rotor and the stator field
orthogonal as much as possible.

I rotor field
stator field
3B
".,...” 4=p. 60 deg sector
““‘
2A 0
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20.16.2 Trapezoidal brushless DC motors

e T} is the torque due to the j-th coils.

e These motors always drive two coils at a time with opposite currents
+1I and —1.

e The total torque T; — T} always has a constant zone.

— Use torque 17 — 15 when 6 = % + %.

— You will need to know the angular position of the rotor.

Tl A o _\T].-TZ
, i \:

\\
=
Y
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20.16.3 Getting a desired torque
e Detect the rotor position via encoders, typically Hall effect sensors.

e Select the appropriate switches to determine the desired 7; — T torque.

Hall ICs
/

1
—

L IeE

[ 3/
(%_* .
F—j

Ilnterfaoe circuit
ira
Rotor position
Microprocessor
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21 Strain gauges

21.1 Stress or strain measurements

e Strain measurements are important to determine safe loading condi-
tions of mechanical structures.

e The stress or force measurements are typically derived indirectly from
strain and displacement measurements.

e Electrical resistance strain gauges have the following characteristics:

— Thin metal foil, typically constantan.
— The thin metal foil is patterned onto plastic backing material.

— This backing is then bonded onto mechanical structures, and the
stress is inferred from solid mechanics principles.

BACKING
ENCAPSULATION

COPPER-COATED TABS
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21.2 Strain

e Strain quantifies the amount of deformation of a body, and it is given
by:
_dL

=1

e It is non-dimensional, as it is defined as a relative change (%)

e Typical material undergo "micro strains" from 10~% (ppm) up to a few

%.

e Strain can either be positive (tensile strain) or negative (compressive
strain).

21.2.1 Poisson’s ratio (v)

Poisson’s ratio is typically from 0.3 (steel) to 0.5 (rubber). It is defined as

follows: .
B lateral strain

axial strain
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21.2.2 Resistance of a rectangular conductor
=r7 A=uwh
dR dp dL dA

R, 1T 4
AR _dp L (duw  dn
R L w h

o Axial strain:

dL
S=T
e Lateral strain:
gw_dh __ dL o
w h L

dR _dp dL (dw dh>
+ ot

", w T
@ 1—1—21/

piezoresistivity

( jl +1+2v | S
p S

~——

=gs
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21.2.3 Gauge factor (G):
dR1 _10R dp1

9= RS RoS p§+1+2”
OR
_ S _
dR = dR® = =5

Note that we are only considering changes of resistance due to strain dR =

dR®.

Gauge factor of various materials:

Material Gauge factor
Nickel -12.6
Manganese +0.07
Nichrome +2.0
Constantan +2.1
Soft Iron +4.2
Carbon +20
Platinum +4.8
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21.3 Transverse sensitivity

dR = RoGS
The larger Ry is, the larger dR is.

Long and thin wires allow for larger Ry, given that the wires are aligned
with axial strain (S%).

Practically, long wires are assembled in the form of a serpentine.

The end-loops of these wires are aligned with the transverse axis, and
are made thicker to reduce sensitivity to transverse strain (S?).

axial
strain
— S@
transverse
strain
St
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21.4 Materials

e The best materials to use constantan and ferry alloys.
e Typical strain ranges are:
S =1-—10*uS
Which is from 1ppm to 1%.
e G is roughly 2.

— % is in the same order of magnitude as S.

— However, there is a challenge in detecting small resistance changes.

4
10% dR
rhodium/ =GgSs
platinum
3
%ARR Ferry alloy
2 =

Constantan alloy

™~ 40% gold/palladium
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21.4.1 Numerical example

dR=R=GS

G is roughly 2

Ry is roughly 100 — 1,000 €

Strain is in the order of 10 — 10% pS (micro strain)

Strain is non-dimensional, and 111S = 1076 (e.g. 1pmm™1)

dR = (10092) x 2 x (100pnS = 0.02Q2)
e Transverse sensitivity is in the order of 1%.

e How do we sense such small changes?
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21.5 Wheatstone bridge

e Bridge equations:

vt Ry

Vi Ri+Ry

V- R4

Vi  Rs+Ry
Vo Ry Ry

Vi Ri+R, Rs+Ry

e Bridge balance condition:

V,=0 = RiRy = R2R3

21.5.1 1st order approximation
e When R; = Rs and R3 = Ry, it implies balance.

e The first order approximation is acceptable up to a few percent S. Note
that 1% S = 10%pS.

dRy  dR; n dRs dRy
Ry Ry Rs Ry
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21.5.2 Quarter bridge

11
Ro Ry
" - +Yo
-
Ro R,+dR
r T

Consider:
Ri=R3=Ry4=Ry
Rg =Ry +dR
The bridge output is:
dVo,  Ro+dR 1

V; 2Ry +dR 2

The Taylor expansion:

dVo _1dR _1dR®
Vi 4Ry 4 R

Hence:

[

VIV [%]

1o 5 0
AR/ R [%]
_50 . r r r
-100 -50 0 50
AR/ R [%]
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21.5.3 Quarter bridge connection types

e 2-wire connection
— Ry, is the long wires’ resistance, which has the following charac-
teristics:

x It is as high as a few ohms.
* The resistance is temperature dependent.

+ There is unbalancing effects.

e 3-wire connection

— No current in the 3rd wire.

— The bridge is balanced.

— There is an attenuated gauge factor.

_1 dr 1 R dj_lg*g
_4R0+Rw_4RQ+RwR0_4

Ry
—_ <
Ry + Ry <9

Gauge
/, /= — Z %;H axé -
L/ Tensile
lnardina

I

Yo
7

G"=g

3-wires connection
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21.6 Temperature compensation

R, #alloading

21.6.1 Dummy gauges

e Dummy gauges are mounted in close thermal contact but not bonded.
e Strain gauge: Ry = Ry + dR,

e Dummy gauge: Re = Ry + dR»

_ORy ., OR
ARy = =S + =dT
dRy = %dT

Because the strain gauge are dummy gauge are technologically similar gauges
in thermal contact:

ORi . Ry
ar =g T
Hence:
dv, 1 /dR; dRs 1 OR; OR; ORy
i _ — dl — —=dT
Vi 4<R0 R0> 4Ro<8SS+8T T )
dv, 1 (0Ri )\ 1
Vv, ~ iR, <aSS> =190
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21.6.2 Poisson gauges

e Poisson gauges are mounted in close thermal contact and bonded.
e Strain gauge: Ry = Ry + dRy
e Poisson gauge: Ry = Rg + dR»

_O0Ry 0Ry

=g Ty
dRy 99 S+ aT d
_ ORy . ORy

Because the strain gauge are Poisson gauge are technologically similar gauges
bonded together in thermal contact:

0Ry ORy

or = or
Ry _ ORy
2s ~ 8S
Hence:
dV, 1 (dR; dR» 1 [OR,., OR ORy .. OR,
— - - - dr + v 225~ T2
V; 4<R0 R0> 4R0<E)SS+ a1 Tt es 0 T ot )

vV, 1 [OR
Vi 4Ro

1
ﬁ(l + V)S> = Zg(l +v)S

21.7 Half bridge

Half bridges have two active strain gauges which enhances the sensitivity of
the bridge.

dVo 1 (dRy dR, n dR3  dRy
V;Z B 4 R2 Rl R3 R4
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21.7.1 Bending

\ r
radius of

neutral fiber curvature
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21.8 Apparent strain

e Apparent strain is manifested as any change in gauge resistance which
is not due to the strain being measured.

e For example, combinations of different mechanical loading, like:

R

G2

Sp =84 80
Sy =89 — 8P
axial (S?) bendinlg (Sb)

21.8.1 Thermal effects

e Resistance changes might be due to a combination of strain and tem-

perature.

OR

dR = =

oS

S+ Ztar = 2

OR
or

dr

oS ) or

OR | o (OR\™'OR
a8

apparent strain S7

e Apparent strain due to temperature. dR” is the resistance change
solely due to temperature in the equation below:

ST

Relative Resistance (R/Rp)

(

OR
95

X

OR 110R 1 dRT
T = grar™ TG R

Nickel Copper
Balco

Platinum

400 1000°C
762 1832

Temperature (T)

224



21.8.2 Half bridge example

Ultimately, sensitivity to loading condition and temperature is determined
by the electrical configuration.

1. Configuration 1:

Sap =S+ S0+ sT

RGl

RGZ
Seo = 5% — 50 4 8T

v, 1
Vi 4

G(Sc1 + Saz) = 50(5 + 57)

e The configuration is sensitive to axial strain.

e It can compensate for bending but not temperature.

2. Configuration 2:

Sg1=5%+ 50+ ST
RGl

RGZ

S =S4 — 50 4 5T

dv, _ 1 _ 1,
v, = Zg<_SG1 + SGQ) = igS

e The configuration is sensitive to bending strain.

e It can compensate for axial strain and temperature.
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21.8.3 Full bridge example

1. Configuration 1:

Sap = 8%+ 8+ 8T
Sy = 8% — 8 + 8T
Sap = 9% = 57"

av, 1 I ca
v Zg(SGl —Sa1+ Sg2 — Saz) = §G5

e The configuration above can sense axial strain.

e [t also can compensate for temperature and bending.
2. Configuration 2:

Sg1=Sa3=8"+5"+ 5T

| — + |-° -Vo
| - R63 RGZ

~

Seo = Sga =5 — S0+ 5T

v, 1

_ _ _ gb
V. 4Q(SG1 Sa2 + Saz — Sca) = GS

e The configuration above can sense bending strain, with maximum
bridge sensitivity.

e It also can compensate for temperature and axial strain.
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21.8.4 Cantilever beams example

Cantilever beams have longitudinal strain due to:

o Axial loading (Fy):

y
/]

X
‘e L
F,
%= Fa
Where:
— L: Length
— t: Thickness
— A: Cross-sectional area
— E: Young’s modulus
e Bending (M, F}):
5(x) Fe [
/] p
/] \ M
!-_/ X
7 -
S «— F,L/E
- <— M/El
L' x
g . M+ FR(L-2)t
b= EI 2
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21.8.5 Area moment of inertia (I)

N}

©

,_a
12
- 777'4
T4
I = W(Tfnam — Tfnin)
4

21.9 Measuring forces

e You are given 2 identical strain-gauges, where:

dR
= =GS, where G =2
e Where and how would you place them, along the beam, to measure the
weight of a mass m and maximise sensitivity as well as compensate for

temperature changes?

- P
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21.10 Bridge balancing

In reality, the bridge is never balanced when stress is applied, hence there is
a need to re-establish balance by modifying arm resistors:

Ri1R3s = RoRy
R, A
“*T/\z R, R R
| 7 R
S~y
¢ L
Z\ /W\Xr R, R, ‘%\/Q\\ R,
(a) Series (c) Potentiometric

The above two circuits require:
e Very low resistance resistors, which is not practical.

e In-series switches or contacts, which results in unreliable extra resis-
tance being added.

R'.!
Lg p Li
R 1 ?YH‘ R VR

(b) Shunt (d) General

The above two circuits are the most suitable, as:
e Much larger resistors can be used.

e The structure of the bridge is not modified, which allows for parallel
insertion.

e (d) is more general as it balances both sides.
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