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1 Definitions

1.1 Measurement system

A measurement system consists of 3 components, a transducer, a signal
processor and a recorder.

1.1.1 Transducer

A transducer is a device that usually converts a physical quality into a time-
varying voltage, called an analogue signal.

1.1.2 Signal processor

A signal processor is a device that can modify the analogue signal.

1.1.3 Recorder

A recorder is a device that displays or records the signal.

1.1.4 Input

The input in a measurement system is the physical quantity to be measured.

1.1.5 Output

The output in a measurement system is usually the output of the transducer
transforming the input into a form compatible with the processor to be
processed.

1.1.6 Difference

The difference in a measurement system is usually the difference in the input
from the output.

1.1.7 Characterisation

A good measurement system is characterised by:

• Phase linearity

• Amplitude linearity

• Adequate bandwidth
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1.2 Amplitude linearity

Amplitude linearity refers to the output always being changed by the same
factor multiplied by the change in the input, i.e.

Vout(t)− Vout(0) = α(Vin(t)− Vin(0))

Where:

• Vout(t) is the voltage output at time t

• Vout(0) is the initial voltage output

• Vin(t) is the voltage input at time t

• Vin(0) is the initial voltage input

• α is the constant of proportionality, or the scaling factor

1.2.1 Remarks

• It is difficult to interpret the output if there is no amplitude linearity.

• A measurement system usually satisfies amplitude linearity over a lim-
ited range of input amplitudes, like a spring.

• Linear response of a measurement system usually holds for a limited
range of the input rate.

• An ideal measurement system exhibits amplitude linearity for any in-
put amplitude and input rate.
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1.2.2 Examples
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1.3 Period and frequency

T is the period in seconds, which is the inverse of frequency (f in Hz).

1.4 Time and frequency domain

Below are the time-domain and frequency-domain plots of a sine wave.
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1.5 Magnitude ratio (M)

Magnitude ratio, which can be considered as the attenuation, is always less
than 1, and is given by:

M(ω) =
1√

1 + (ωτ)2

Where:

• M is the magnitude ratio

• ω is the angular frequency

• τ is the time constant

1.6 Dynamic error (δ)

A dynamic error for a first order system is always less than 1, and is given
by:

δ(ω) = 1−M(ω)

Where:

• δ is the dynamic error

• M is magnitude ratio

1.7 Radicand

Radicand is the quantity inside the square root sign. For example, the
radicand of

√
3 is 3, and the radicand of

√
x2 + 2bx+ b2 is x2 + 2bx+ b2.
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1.8 Common mode rejection ratio (CMRR)

• Common mode rejection ratio (CMRR) is the ratio of the different
mode gain to the common mode gain.

• The difference mode gain is the amplification factor for the difference
between the input signals.

• The common mode gain is the amplification factor for the average of
the input signals.

• For an ideal difference amplifier, the common mode gain is 0, implying
an infinite common mode rejection ratio.

• It is desirable to minimise the common mode gain to suppress signals
such as noise that are common to both inputs.

1.9 Analogue-to-digital (A/D) conversion

• An electronic integrated circuit which transforms a signal from ana-
logue (continuous) to digital (discrete) form.

• Analogue signals are directly measurable quantities.

• Digital signals only have two states. For the digital computer, we refer
to the binary states: 0 and 1.

1.10 Dithering

Dithering is a form of noise that is intentionally applied to randomise quan-
tisation error.

1.11 Transducers

Transducers convert one form of energy into another, and it is not necessary
to perform a measurement.

1.12 Sensors

Sensors produce an output signal, which is typically electrical, for the pur-
pose of sensing a physical phenomenon.
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1.13 Sensor classification

• Analogue vs digital

– Light on and off switch vs light dimmer.

• Passive vs active

– Passive sensors do not require external an external power supply,
and they draw energy from the input signal itself.

• Null versus deflection type

– Null type sensors counteract any deflection due to the measured
quantity using an opposing calibrated force.

• Subject of measurement

– Mechanical, optical, thermal, etc.

1.14 Instrumentation systems

• Sensing module, which can be mechanical, thermal, optical, pyrolytic,
piezoelectric, etc.

• Conversion module to convert from analogue to digital.

• Pre-processing, which is a module that manipulates the variables.

• Data transmission, which can be wired or wireless, transferred over the
internet, etc.

• Presentation or storage to the user.

1.15 Input

Input is the stimulus. Some examples include temperature, pressure, and
strain.

1.16 Output

The output is usually an electrical signal, which is defined using voltage,
current, frequency, phase, etc.
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1.17 Sensitivity (S)

The sensitivity is defined as:

S =
Output variation
Input variation

It is also the slope of the graph of the output (f(x)) against the input (x).

S =
df

dx

1.18 Resolution

The resolution is the minimum change of the input that can be reliably
detected. It is limited by noise, bit-conversion, and many other things.

1.19 Accuracy

The accuracy is the difference of the measurement from the true value.

1.20 Repeatability

Repeatability is how well a system or device can reproduce an outcome in
unchanged conditions.
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1.21 Types of instrument errors

1.21.1 Nonlinearity

1.21.2 Hysteresis
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1.21.3 Sensitivity error

1.21.4 Zero-shift error

16



1.22 Lorentz’s law

F⃗ = (⃗i× B⃗)L

F = ||F⃗ ||BiL sin θ

Where:

• F⃗ is the magnetic force

• i⃗ is the current

• B⃗ is the magnetic field

• L is the length of the wire
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1.23 Faraday’s law

emf = E = −dΦ

dt

Φ ≜
∫
Σ
B⃗ dΣ⃗

Where:

• emf is the electromotive force

• Φ is the magnetic flux

• Σ is the surface whose boundary coincides with the coil

– It is not uniquely defined but div B = 0, which means the
integral only depends on the boundary.
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2 Fourier series representation of signals

• Any periodic signal can be represented by a combination of an infinite
number of sinusoid terms.

• Easy and standardised way to deal with any periodic signals (simple
or complicated) using sine and cosine terms.

• In addition to time domain analysis, frequency domain analysis helps to
gain insights of the signals which are fundamental to signal processing,
and other mechatronics applications.

• To study bandwidth and phase linearity, which are applied to frequency
components of an input signal, it is necessary to review the Fourier
series representation of a signal.

• Any periodical waveform can be represented as an infinite series of sine
and cosine waveforms of different amplitudes and frequencies.

• Summing up this infinite series gives the original periodical waveform.

• Practically, a finite number of the sine and cosine waveforms can ade-
quately represent a periodical waveform.

2.1 Fundamental frequency

Let ω0 be the fundamental of first (lowest) harmonic frequency defined as:

ω0 =
2π

T
= 2πf0

Where:

• ω0 is the fundamental angular frequency

• T is the period

• f0 is the fundamental frequency in Hz

The other sine and cosine waveforms have frequencies of integer multiples of
ω0.
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2.2 Fourier series representation of a periodical waveform

The Fourier series representation of a periodical waveform f(t) is:

F (t) = C0 +

∞∑
n=1

An cos(nω0t) +

∞∑
n=1

Bn sin(nω0t)

Where:

• C0 is the DC component of the signal, i.e. the non-periodical part of
the waveform, given by:

C0 =
1

T

∫ T

0
f(t) dt =

A0

2

Where:

– T is the period
– f(t) is the periodical waveform
– t is the time
– A0 is the initial amplitude of the waveform

• An is given by:

An =
2

T

∫ T

0
f(t) cos(nω0t) dt

Where:

– T is the period
– ω0 is the fundamental angular frequency
– t is the time
– n is just a number

• Bn is given by:

Bn =
2

T

∫ T

0
f(t) sin(nω0t) dt

Where:

– T is the period
– ω0 is the fundamental angular frequency
– t is the time
– n is just a number

Note that C0 is the average value of the waveform over its period.
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2.2.1 In general

Given:
Cn =

√
A2

n +B2
n

ϕn = − arctan

(
Bn

An

)
Then:

F (t) = C0 +
∞∑
n=1

(An cos(nω0t) +Bn(sinnω0t))

= C0 +

∞∑
n=1

√
A2

n +B2
n

(
An√

A2
n +B2

n

cos(nω0t) +
Bn√

A2
n +B2

n

sin(nω0t)

)

= C0 +
∞∑
n=1

Cn (cos(ϕn) cos(nω0t)− sin(ϕn) sin(nω0t))

= C0 +

∞∑
n=1

Cn cos(nω0t+ ϕn)

ϕn = − arctan

(
Bn

An

)
cos(ϕn) =

An√
A2

n +B2
n

sin(ϕn) = − Bn√
A2

n +B2
n
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2.2.2 Sine form

Given:
Cn =

√
A2

n +B2
n

ϕ∗
n = arctan

(
An

Bn

)
Then:

F (t) = C0 +
∞∑
n=1

(An cos(nω0t) +Bn(sinnω0t))

= C0 +

∞∑
n=1

√
A2

n +B2
n

(
An√

A2
n +B2

n

cos(nω0t) +
Bn√

A2
n +B2

n

sin(nω0t)

)

= C0 +
∞∑
n=1

Cn (sin(ϕ
∗
n) cos(nω0t) + cos(ϕ∗

n) sin(nω0t))

= C0 +

∞∑
n=1

Cn sin(nω0t+ ϕ∗
n)

ϕ∗
n = arctan

(
An

Bn

)
sin(ϕ∗

n) =
An√

A2
n +B2

n

cos(ϕ∗
n) =

Bn√
A2

n +B2
n
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2.2.3 Example: Square waveform with period T

The square waveform is defined as:

f(t) =

{
1 0 ≤ t ≤ T

2

−1 T
2 ≤ t ≤ T

Then:
An = 0

Bn =
2

T

(∫ T
2

0
sin(nω0t) dt−

∫ T

T
2

sin(nω0t) dt

)

=
2

T

(
− 1

nω0
cos(nω0t)

∣∣∣∣T2
0

+
1

nω0
cos(nω0t)

∣∣∣∣T
T
2

)

=
2

nπ
(1− cos(nπ))

=

{
4
nπ if n is odd
0 if n is even

Therefore:

F (t) =
4

π
sin(ω0t) +

4

3π
sin(3ω0t) +

4

5π
sin(5ω0t) + · · ·

=
∞∑
n=1

4

(2n− 1)π
sin((2n− 1)ω0t)
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2.2.4 Representation of a square wave
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2.2.5 Plotting the frequency spectrum of a waveform

When plotting the frequency spectrum for a signal represented by a Fourier
series, use the signal amplitude generated from the equation below:

F (t) = C0 +
∞∑
n=1

Cn cos(nω0t+ ϕn)

For the square wave above:

F (t) =
4

π
sin(ω0t) +

4

3π
sin(3ω0t) +

4

5π
sin(5ω0t) + · · ·
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2.2.6 Time domain analysis

2.2.7 Frequency response analysis
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2.3 Even functions

Even functions can solely be represented by cosine waves, i.e.

Bn = 0

Because sin(nω0t) is an odd function, f(t) · sin(nω0t) is an odd function,
hence:

Bn =
2

T

∫ T
2

−T
2

f(t) sin(nω0t) dt = 0

An =
2

T

∫ T
2

−T
2

f(t) cos(nω0t) dt =
4

T

∫ T
2

0
f(t) cos(nω0t) dt

F (t) = C0 +A1 cos(1ω0t) +A2 cos(2ω0t) +A3 cos(2ω0t) + . . .
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2.4 Odd functions

Even functions can solely be represented by sine waves, i.e.

C0 = 0, and all An = 0

Because cos(nω0t) is an even function, f(t) · cos(nω0t) is an even function,
hence:

An =
2

T

∫ T
2

−T
2

f(t) cos(nω0t) dt = 0

C0 =
1

T

∫ T
2

−T
2

f(t) dt = 0

Bn =
2

T

∫ T
2

−T
2

f(t) sin(nω0t) dt =
4

T

∫ T
2

0
f(t) sin(nω0t) dt

F (t) = C0 +B1 sin(1ω0t) +B2 sin(2ω0t) +B3 sin(3ω0t) + . . .
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2.5 Calculation of the Fourier coefficients

Find the Fourier series for the following periodic waveform:

Function:

f(t) =

{
1, t ∈ [−T

4 ,
T
4 ]

0, t ∈ [T4 ,
3T
4 ]

Periodic:
f(t+ T ) = f(t)

Period = T

Symmetry: Even-function
f(−t) = f(t)

The function is an even function, hence:

Bn = 0

C0 =
1

T

∫ 3T
4

−T
4

f(t) dt =
1

T

∫ T
4

−T
4

1 dt =
1

2

An =
2

T

∫ T
2

−T
2

f(t) cos(nω0t) dt

=
4

T

∫ T
2

0
f(t) cos(nω0t) dt

=
4

T

∫ T
4

0
1 cos(nω0t) dt

=
4

nπω0T

∫ T
4

0
d(sin(nω0t))

=
4

nπω0t

(
sin(nω0

T

4
− 0)

)
=

2

nπ
sin
(nπ

2

)
29



The corresponding Fourier series is:

F (t) =
1

2
+
2

π
cos

(
1 · 2π

T
· t
)
− 2

3π
cos

(
3 · 2π

T
· t
)
+

2

5π
cos

(
5 · 2π

T
· t
)
− 2

7π
cos

(
7 · 2π

T
· t
)
+. . .
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2.6 Square wave decomposition

2.6.1 Half square wave decomposition

F (t) =
1

2
+
2

π
cos

(
1 · 2π

T
· t
)
− 2

3π
cos

(
3 · 2π

T
· t
)
+

2

5π
cos

(
5 · 2π

T
· t
)
− 2

7π
cos

(
7 · 2π

T
· t
)
+. . .
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2.6.2 Full square wave decomposition

F (t) =
4

π
sin(ω0t) +

4

3π
sin(3ω0t) +

4

5π
sin(5ω0t) + · · ·
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2.7 Complex form of the Fourier series

The standard Fourier series representation is given as:

F (t) = C0 +

∞∑
n=1

(An cos(nω0t) +Bn sin(nω0t))

Using Euler’s formulae:

cos(nω0t) =
einω0t + e−inω0t

2

sin(nω0t) =
einω0t + e−inω0t

2j

So:
einω0t = cos(nω0t) + j sin (nω0t)

e−inω0t = cos(nω0t)− j sin (nω0t)

The n-th harmonic component can be expressed as:

An cos(nω0t) +Bn sin(nω0t)

= An
einω0t + e−inω0t

2
+Bn

einω0t − e−inω0t

2j

= An
einω0t + e−inω0t2

+
− jBn

einω0t − e−inω0t

2

=
An − jBn

2
einω0t +

An + j

2
e−inω0t

Denoting:

Dn =
An − jBn

2
, D−n =

An + jBn

2

D0 =
A0

2

An cos(nω0t) +Bn sin(nω0t) = Dne
inω0t +D−ne

−inω0t

Therefore, the Fourier series can be expressed as:

F (t) = D0 +

∞∑
n=1

(Dne
inω0t+D−ne−inω0t

) =

∞∑
n=−∞

Dne
inω0t
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2.7.1 Coefficients

The coefficients Dn can be evaluated in the following manner:

Dn =
(An − jBn)

2

=
1

T

∫ T
2

−T
2

f(t) cos(nω0t) dt−
j

T

∫ T
2

−T
2

f(t) sin(nω0t) dt

=
1

T

∫ T
2

−T
2

f(t)(cos(nω0t)− j sin(nω0t)) dt

=
1

T

∫ T
2

−T
2

f(t)e−inω0t dt

The coefficients D−n can be evaluated in the following manner:

D−n =
(An + jBn)

2

=
1

T

∫ T
2

−T
2

f(t) cos(nω0t) dt+
j

T

∫ T
2

−T
2

f(t) sin(nω0t) dt

=
1

T

∫ T
2

−T
2

f(t)(cos(nω0t) + j sin(nω0t)) dt

=
1

T

∫ T
2

−T
2

f(t)einω0t dt

Note that D−n is the complex conjugate of Dn:

Dn =
(An − jBn)

2

D−n =
(An + jBn)

2

So the Fourier series decomposition has the Dn in complex form:

Dn =
1

T

∫ T
2

−T
2

f(t)e−inω0t dt n = 0,±1,±2, . . .

We have the complex form of the Fourier series:

F (t) =

∞∑
n=−∞

Dne
inω0t
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2.8 Regular form vs complex form

2.8.1 Regular form

An =
2

T

∫ T

0
f(t) cos(nω0t) dt n = 1, 2, 3, . . .

Bn =
2

T

∫ T

0
f(t) sin(nω0t) dt n = 1, 2, 3, . . .

F (t) = C0 +

∞∑
n=1

An cos(nω0t) +Bn sin(nω0t)

2.8.2 Complex form

Dn =
1

T

∫ T
2

−T
2

f(t)e−inω0t dt

n = 0,±1,±2, . . .

F (t) =
∞∑

n=−∞
Dne

inω0t

2.9 Cosine-only form vs complex form

2.9.1 Cosine-only form

Cn =
√
A2

n +B2
n

ϕn = − arctan

(
Bn

An

)
F (t) = C0 +

∞∑
n=1

Cn cos(nω0t+ ϕn)

A−n =
2

T

∫ t

0
f(t) cos(−nω0t) dt = An

B−n =
2

T

∫ t

0
f(t) sin(−nω0t) dt = −Bn

Cn =
√

A2
−n +B2

−n =
√

A2
n +B2

n = Cn

ϕ−n = arctan

(
B−n

A−n

)
= arctan

Bn

An
= −ϕn

F (t) = C0 +
1

2

∞∑
n=−∞,n̸=0

Cn cos(nω0t+ ϕn)
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2.9.2 Complex form

Dn =
1

T

∫ T
2

−T
2

f(t)e−inω0t dt

n = 0,±1,±2, . . .

F (t) =
∞∑

n=−∞
Dne

inω0t

2.10 Complex Fourier series decomposition

Using nwω0 = m:

Dn =
1

T

∫ T
2

−T
2

f(t)e−inω0t dt

=
1

T

∫ T
4

−T
4

1e−mt dt

=
1

−mT
e−mt

∣∣∣∣T4
−T

4

= − 1

mT

(
e

−mT
4 − e

mT
4

)
Using Euler’s formulae:

cos(nω0t) =
einω0t + e−inω0t

2

sin(nω0t) =
einω0t + e−inω0t

2j
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We have:

Dn =
1

−in2π

(
e

inπ
2 − e

in
2

)
=

e
inπ
2 − e

inπ
2

2j

1

π

=
sin
(
nπ
2

)
nπ

D−n =
sin
(−nπ

2

)
−nπ

= Dn

To find D0:

D0 =
1

T

∫ T
4

−T
4

1 dt =
1

2

The square signal can be decomposed in complex form:

F (t) =
∞∑

n=−∞
Dne

inω0t

= D0 +
∞∑
n=1

Dn(e
inω0t + e−inω0t)

= D0 +
∞∑
n=1

2Dn
einω0t + e−inω0t

2

=
1

2
+

∞∑
n=1

2
sin
(
nπ
2

)
nπ

cos(nω0t)

Setting ω0 =
2π
T , the result is the same as the decomposition using the regular

Fourier series:

F (t) =
1

2
+
2

π
cos

(
1 · 2π

T
· t
)
− 2

3π
cos

(
3 · 2π

T
· t
)
+

2

5π
cos

(
5 · 2π

T
· t
)
− 2

7π
cos

(
7 · 2π

T
· t
)
+. . .
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2.11 Signal reconstruction

Given:

• DC C0

• The all harmonic amplitude: An and Bn, n = 1, 2, . . . , N

• The fundamental frequency ω0

We can reconstruct the signal by using either one of the following:

F (t) = C0 +
∞∑
n=1

(An cos(nω0t) +Bn sin(nω0t))

F (t) =

∞∑
n=−∞

Dne
inω0t

2.12 Signal approximation

Given:

• DC C0

• The all harmonic amplitude: An and Bn, n = 1, 2, . . . , N

• The fundamental frequency ω0

We can approximate the signal by SN (t):

F (t) =
N∑

n=−N

Dne
inω0t
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2.12.1 Approximation error

A practical calculation of the Fourier series requires that we truncate the
series to a finite number of terms.

f(t) ≈=
N∑

n=−N

Dne
inω0t = SN (t)

The error for N terms is:

ε(t) = f(t)− SN (t)

The use the mean-square error (MSE) defined as:

MSE =
1

T

∫ T

0
ε2(t) dt

MSE is minimum when Dn is equal to the Fourier series’ coefficients.
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2.13 Amplitude and phase

Based on the cosine form of the Fourier series:

F (t) = C0 +
∞∑
n=1

An cos(nω0t+ ϕn)

A periodic waveform can be represented by an infinite series of cosine of
single amplitude and phase.

Single amplitude: Cn =
√
A2

n +B2
n

Phase (angle): ϕn = − arctan

(
Bn

An

)
2.14 Fourier spectrum

2.14.1 Amplitude spectrum
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2.14.2 Phase spectrum

2.14.3 Amplitude, frequency and phase

• DC: C0 is the average value of f(t)

• The nth harmonic amplitude: Cn

• The fundamental frequency: ω0

• The nth fundamental frequency: nω0

• The nth phase angle: ϕn = − arctan
(
Bn
An

)
• The fundamental term: For n = 1, the corresponding sinusoid is
C1 cos(ω0t+ ϕ1)

• The nth harmonic term: The nth corresponding sinusoid is Cn cos(nω0t+
ϕn)
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2.15 Circuits and Fourier series

It is often desired to determine the response of a circuit excited by a periodic
signal vs(t).
Assume:

R = 1Ω, C = 2F, T = π sec

And an RC circuit excited by a periodic voltage vs(t), as shown below:

The square signal exciting the RC circuit:
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2.15.1 Equivalent circuit

In the equivalent circuit below, each voltage source is a term of the Fourier
series of the input voltage vs(t).

2.15.2 Steady state response of the circuit

Since each input is a sinusoid, we want to find the steady state responses to
the sinusoid.
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2.15.3 Making use of the Fourier series

The Fourier series representation of the square waveform:

F (t) =
1

2
+
2

π
cos

(
1 · 2π

T
· t
)
− 2

3π
cos

(
3 · 2π

T
· t
)
+

2

5π
cos

(
5 · 2π

T
· t
)
− 2

7π
cos

(
7 · 2π

T
· t
)
+. . .

Since T = π, the first 4 terms of vs(t) are:

vs(t) ≈
1

2︸︷︷︸
vs0(t)

+
2

π
cos 2t︸ ︷︷ ︸
vs1(t)

− 2

3π
cos 6t︸ ︷︷ ︸

vs3(t)

+
2

5π
cos 10t︸ ︷︷ ︸
vs5(t)

The steady state response v0(t) can be found using superposition:

vo(t) = vo0(t) + vo1(t) + vo3(t) + vo5(t)

2.15.4 Getting the impedance of the capacitor

The impedance of the capacitor is:

Zc =
1

inω0C
, for n = 0, 1, 3, 5, . . .

Because:
T = π, ω0 =

2π

T
= 2 sec

Since:
R = 1Ω, C = 2F, T = π sec

We can find:

Von =
1

inω0C

R+ 1
inω0C

Vsn

=
Vsn

1 + inω0CR

=
Vsn

1 + j4n

=
(1− j4n)Vsn

(1− j4n)(1 + j4n)

=
(1− j4n)Vsn

(1 + 16n2)

=
1√

1 + 16n2

(
1√

1 + 16n2
− j

4n√
1 + 16n2

)
Vsn
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Let θn = − arctan(4n):

Von =
1√

1 + 16n2
(cos θn + j sin θn)Vsn

=
1√

1 + 16n2
eiθnVsn, n = 0, 1, 3, 5, . . .

Since Vsn = |Vsn|einω0t = 2
nπe

i2nt:

Von =
1√

1 + 16n2
eiθnVsn

=
2

nπ
√
1 + 16n2

e2nt+θn

When n = 0:
Vo0 =

1

2

When n = 1:
θ1 = − arctan(4× 1) = −75.96◦

Vo1 =
2

1π
√
1 + 16× 12

ei2×1t(−75.96) = 0.1544ei(2t−75.96◦)

When n = 3:
θ3 = − arctan(4× 3) = −85.24◦

Vo3 =
2

3π
√
1 + 16× 32

ei2×3t(−85.24) = 0.0176ei(6t−85.24◦)

When n = 5:
θ5 = − arctan(4× 5) = −87.14◦

Vo5 =
2

5π
√
1 + 16× 52

ei2×5t(−87.14) = 0.0063ei(10t−87.14◦)

Therefore:

vo(t) = 0.5+0.1544 cos(2t−75.96◦)+0.0176 cos(6t−85.24◦)+0.0063 cos(10t−87.14◦)
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2.16 Conditions for the Fourier series

To be described by the Fourier series, the waveform f(t) must satisfy the
following mathematical properties:

• f(t) is a single-value function, except at possibly a finite number of
points.

• For any t0, the integral
∫ t0+T
t0

|f(t)| dt < ∞.

• f(t)) has a finite number of discontinuities within the period T .

• f(t) has a finite number of maxima and minima within the period
T .

In practice, f(t) is usually an amplitude function, so the above 4 conditions
are always satisfied.

2.17 Insights

2.17.1 Frequency response methods

Giving a different kind of insight into a system with insights of unexpected
results.

2.17.2 Frequency spectrum

Focusing on how signals of different frequencies are represented in a signal
thus with insights in terms of the spectrum of the signal.

2.17.3 Computer processing

Often, it is easier and more cost-effective to characterise the frequency con-
tent of a noise signal than to give a time description of the noise.

2.17.4 Applications

Different treatment of different parts of the electromagnetic spectrum means
that you can separate the different radio, television and cell phone signals.
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3 Bandwidth and frequency response

• It is important to estimate the spectrum of a signal when choosing a
measurement system.

• Ideal measurement systems replicates all frequency components of
an input signal.

• Practical measurement systems have limitations in reproducing all
frequencies.

3.1 Decibel scale

The common scale used to measure fidelity of a measurement system’s
reproduction at different frequencies is the decibel scale:

dB = 20 log1 0

(
Aout

Ain

)
Where:

• Ain is the input amplitude of a harmonic

• Aout is the output amplitude of a harmonic

3.2 Frequency response curve (Bode plot)

A frequency response curve or a Bode plot plots Aout
Ain

versus input frequency.
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3.3 Bandwidth

Bandwidth is the range of the frequencies where the input is not attenuated,
i.e. the amplitude is not reduced, or the volume is not reduced, by more
than −3 dB, i.e.

Bandwidth = ωL to ωh

Where:

• ωL is the low cut-off or corner frequency

• ωL is the high cut-off or corner frequency
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3.3.1 Why −3 dB?

The value comes from half of the output power over the input power, i.e.

1

2
=

Pout

Pin
=

(
Aout

Ain

)2

⇒ Aout

Ain
=

√
1

2

⇒ dB = 20 log10

√
1

2

≈ −3 dB

3.3.2 Example

Calculating output amplitude A′
i given a measurement frequency response

curve, with the input signal spectrum as:

Vin(t) = A1 sin(ω0t) +A2 sin(2ω0t) +A3 sin(3ω0t) + · · ·

The output amplitude A′
i is calculated as:

A′
i =

(
Aout

Ain

)
Ai
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4 Periodic functions

4.1 Definition

A periodic function is any function of time that satisfies the following:

f(t+ T ) = f(t)

Where:

• T is a constant called the period of the function

4.2 Even-function symmetry

Any function of time f(t) that satisfies the below condition is called an even
function.

f(−t) = f(t)
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4.3 Odd-function symmetry

Any function of time f(t) that satisfies the below condition is called an odd
function.

f(−t) = −f(t)

4.4 Properties of symmetric functions

Let f(t) be a periodic function with period T .

f(t)
∫ T

2

−T
2

f(t) dt

Even
∫ T

2

−T
2

f(t) dt = 2
∫ T

2
0 f(t) dt

Odd
∫ T

2

−T
2

f(t) dt = 0
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4.5 Conversion from non-periodic to periodic

4.5.1 Original pattern

A non-periodic function f(t) defined over (0, t) can be expanded into a
Fourier series which is defined only in the interval (0, t). Note that the
original pattern may not necessarily pass the origin.

4.5.2 Without considering symmetry

One simple technique that can be applied is to offset the original pattern
along the time axis by a distance of nT (τ < T ), n = ±1,±2,±3, . . .
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4.5.3 Expansion into even-function symmetry

A second pattern can be created by mirroring the original pattern against
an axis t = τ .
An even-function symmetric periodic waveform can be generated by offset-
ting the two patterns merged along the time axis by a distance nT (T =
2τ), n = ±1,±2,±3, . . .

4.5.4 Expansion into odd-function symmetry

A third pattern can be created by mirroring the original pattern against the
time axis and then the axis t = τ .
An odd-function periodic waveform can be generated by offsetting the two
patterns merged along the time axis by a distance nT (T = 2τ), n = ±1,±2,±3, . . .
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4.6 Examples

4.6.1 Square signal

4.6.2 Triangular signal
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4.6.3 Sawtooth signal

4.6.4 Pulse signal
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4.6.5 Rectified signal

4.6.6 General periodic signal
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5 Dynamic systems

5.1 Example 1

A linear potentiometer used as a position sensor.

The system behaviour is:

Vout =
Rx

Rp
Vs =

Vs

L
Xin

Where:

• Xin is the wiper displacement with the potentiometer

• Rp is the maximum resistance of the potentiometer

• Rx is the resistance between the potentiometer leads

• L is the maximum amount of wiper travel
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5.2 Example 2

A resistor-capacitor circuit.

In this system, applying Kirchhoff’s Laws and the voltage-current relations
for a resistor and capacitor produces a first order linear differential equation
relating the output voltage to the input voltage.
The system behaviour is:

RC =
dVout

dt
+ Vout = Vin

Where:

• R is the resistance of the resistor

• C is the capacitance of the capacitor

• Vout is the output voltage

• Vin is the input voltage
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5.3 Example 3 (second-order system)

A spring damping system.

The system behaviour is:

m
d2x

dt2
+ b

dx

dt
+ kx = Fext(t)

Where:

• m is the mass of the block

• b is the damping coefficient

• k is the spring constant

• x is the displacement of the mass from the equilibrium (rest) position
of the mass

• Fext(t) is the external force along the x-direction
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5.4 Measurement system: Ordinary differential equations

5.4.1 Why ordinary differential equations?

• Ordinary differential equations have time as the only variable.

• Ordinary differential equations can be used to explain the behaviour
of a dynamic system.

• At steady state, there is no change, which means there is no need to
use ordinary differential equations in steady state.
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6 Linear systems

• Linear systems are of the form:

An
dNXout

dtN
+AN−1

dN−1Xout

dtN−1
+ · · ·A1

dXout

dt
+A0Xout

= BM
dMXin

dtM
+BM−1

dM−1Xin

dtM−1
+ · · ·+B1

dXin

dt
+B0Xin

• Alternatively:
N∑

n=0

An
dnXout

dtn
=

M∑
m=0

Bm
dmXin

dtm

• The word "linear" comes from the coefficients:

An(n = 0, . . . , N) and Bm(m = 0, . . . ,M)

Where:

• Xin and Xout are input and output variables

• An and Bm are coefficients

• N is the order of the system

6.1 Homogeneous equation of a linear system
N∑

n=0

An
dnXout

dtn
= 0

Where:

• Xout is the output variables

• An is a coefficient

• N is the order of the system

6.2 Characteristic equation of a homogeneous equation
N∑

n=0

Ans
n = 0

Where:

• An and s are coefficients

• N is the order of the system
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6.2.1 Primary (N = 1)

A1s+A0 = 0

s =
A0

A1
, if A0 ̸= 0

6.2.2 Quadratic (N = 2)

A2s
2 +A1s+A0 = 0

s =
−A1 ±

√
A2

1 − 4A0A2

2A2
, if A2 ̸= 0

6.3 Roots of the characteristic equation
N∑

n=0

Ans
n = 0, AN ̸= 0

6.3.1 When N = 1

Single real root:
s1 = r

Where:

• s1 is the coefficient of the characteristic equation

• r is the root

6.3.2 When N = 2

• Double real roots:
s1 = s2 = r

• Two different real roots:
s1 ̸= s2

• Two conjugate roots:

s1 = a+ bi, s2 = a− bi

6.3.3 When N = k

Multiple k-fold real roots:

s1 = . . . = sk = r
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6.4 Solving the homogeneous equation

6.4.1 When N = 1

• Single real root: s1 = r

• General solution for the homogeneous equation:

C0e
rt

6.4.2 When N = 2

1. Two conjugate roots:

s1 = a+ bi, s2 = a− bi

General solution for the homogeneous equation:

(C1 sin(bt) + C2 cos(bt))e
at

2. Two different real roots:
s1 ̸= s2

General solution for the homogeneous equation:

C1e
s1t + C2e

s2t

3. Double real roots:
s1 = s2 = r

General solution for the homogeneous equation:

(C1 + C2t)e
rt

6.4.3 When N = k

• Multiple k-fold real roots:

s1 = s2 = . . . = sk = r

• General solution for the homogeneous equation:

(C0 + C1t+ C2t
2 + . . .+ Ck−1t

k−1)ert
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6.5 Input functions in a linear system

• Step input

• Sinusoidal input

• Pulse input

• Square input

6.6 Special cases of linear systems

6.6.1 Zero-order system

• M = 0

• N = 0

A0Xout = B0Xin

Where:

• A0 and B0 are coefficients

• Xout and Xin are output and input variables

6.6.2 First-order system

• M = 0

• N = 1

A1
dXout

dt
+A0Xout = B0Xin

Where:

• A1, A0 and B0 are coefficients

• Xout and Xin are output and input variables
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6.6.3 Second-order system

• M = 0

• N = 2

A2
d2Xout

dt2
+A1

dXout

dt
+A0Xout = B0Xin

Where:

• A1, A2, A0 and B0 are coefficients

• Xout and Xin are output and input variables

6.7 Zero-order system

6.7.1 Example

Where:

• Xin is the wiper displacement with the potentiometer

• Rp is the maximum resistance of the potentiometer

• Rx is the resistance between the potentiometer leads

• L is the maximum amount of wiper travel

System behaviour:

Vout =
Rx

Rp
Vs =

Vs

L
Xin

Zero-order system:
A0Xout = B0Xin
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6.7.2 General zero-order system

A0Xout = B0Xin

Xout =
B0

A0
Xin

Xout = KXin

Where:

• Xout and Xin are output and input variables

• K is a constant called gain or sensitivity

6.7.3 Remarks

A zero-order system follows the input exactly without any time delay or
distortion.

Input Signal Xin → Degenerated differential equations → Output signal Xout

The input signals can be of any periodic waveform.

6.8 First-order system

6.8.1 Example

In this system, applying Kirchhoff’s Laws and the voltage-current relations
for a resistor and capacitor produces a first order linear differential equation
relating the output voltage to the input voltage.
System behaviour:

RC =
dVout

dt
+ Vout = Vin
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6.8.2 General first-order system

When N = 1 and M = 0:

A1
dXout

dt
+A0Xout = B0Xin

→ τ
dXout

dt
+Xout

= KXin

Where:

• K = B0
A0

is the static sensitivity

• τ = A1
A0

is the time constant

Hence, the first-order system equation can be written as:

τ
dXout

dt
+Xout = KXin

Note that in this standard form, the coefficient of the Xout term must be 1,
hence:

A0 ̸= 0

6.8.3 Step response of first-order systems

The step input changes instantaneously from 0 to a constant value Ain and
is stated mathematically as:

Xin =

{
0 t < 0

Ain t ≥ 0

The output of the system in response to this input is called the step response
of the system. For a first-order system, we can find the step response by
solving the first-order ordinary differential equation below:

τ
dXout

dt
+Xout = KXin

Initial condition:
Xout(0) = 0

Characteristic equation:
τs+ 1 = 0

Roots of the characteristic equation:

s = −1

τ
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6.8.4 Solving the homogeneous equation

• Linear system:

τ
dXout

dt
+Xout = KXin

• Homogeneous equation:
τs+ 1 = 0

• Root:
r = −1

τ

• General solution for the homogeneous equation:

Xouth = C0e
− t

τ

Where:

– C0 is a constant determined later by applying initial conditions

• A particular or steady state solution resulting form the step input
Xin = Ain:

Xoutp = KAin

• General solutions for the linear system:

Xout = Xouth +Xoutp = C0e
− t

τ +KAin

6.8.5 Determining the step response of the first-order system

Determining the constant by initial conditions:

τ
dXout

dt
+Xout = KXin

Xout = Xouth +Xoutp = Ce−
t
τ +KAin

Applying the initial condition Xout|t=0 = Xout(0) to this equation gives:

Xout(0) = C +KAin

Thus:
C = Xout(0)−KAin

So, the resulting step response is:

Xout = Xout(0)e
− t

τ +KAin(1− e−
t
τ )

If Xout(0) = 0:
Xout = KAin(1− e−

t
τ )
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6.8.6 Graph of the step response of the first-order system

τ
dXout

dt
+Xout = KXin

→ Xout = KAin(1− e−
t
τ )

Xout = Xouth +Xoutp = Ce−
t
τ +KAin

→ Xout(0) = 0

• The graph above represents an exponential rise in the output toward
an asymptotic value of KAin.

• The rate of rise depends only on the time constant τ .

• The response is faster for a smaller time constant.

• After one time constant, the output reaches 63.2% of its final value:

Xout(t = τ) = KAin(1− e−
t
τ = 0.632KAin)

• After four time constants, the step response is:

Xout(t = 4τ) = KAin(1− e−
4t
τ ) = 0.982KAin

• Since this value is more than 98% of the steady state value KAin, we
usually assume that a first-order system has reached its steady state
value within four time constants.

• When designing a first-order measurement system, look at quantities
that affect τ and try to reduce them if possible.

• The larger τ is, the longer the measurement system takes to respond
to an input.
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6.9 Second-order system

A2
d2Xout

dt2
+A1

dXout

dt
+A0Xout = B0Xin

6.9.1 Example

Where:

• m is the mass of the block

• b is the damping coefficient

• k is the spring constant

• x is the displacement of the mass from the equilibrium (rest) position
of the mass

• Fext(t) is the external force along the x-direction

System behaviour:

m
d2x

dt2
+ b

dx

dt
+ kx = Fext(t)
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6.9.2 Equations

• M = 0, N = 2

• Homogeneous equation:

A2
d2Xout

dt2
+A1

dXout

dt
+A0Xout = 0

• Characteristic equation:

A2s
2 +A1s+A0, A2 ̸= 0

• Roots of the characteristic equation:

A2s
2A1s+A0 = 0, A2 ̸= 0

s =
−A1 ±

√
A2

1 − 4A0A2

2A2
, if A2 ̸= 0
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6.9.3 Solving the homogeneous equation

• Homogeneous equation:

N∑
n=0

An
dnXout

dtn
= 0

• Characteristic equation:

N∑
n=0

Ans
n = 0, AN ̸= 0

• Two conjugate roots:

s1 = a+ bi, s2 = a− bi

General solution for the homogeneous equation:

(C1 sin(bt) + C2 cos(bt))e
at

• Two different real roots:
s1 ̸= s2

General solution for the homogeneous equation:

C1e
s1t + C2e

s2t

• Double real roots:
s1 = s2 = r

General solution for the homogeneous equation:

(C1 + C2t)e
rt
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6.9.4 Unforced response of a second-order system

m
d2x

dt2
+ b

dx

dt
+ kx = 0

Characteristic equation of the second-order system:

ms2 + bs+ k = 0

Roots of the characteristic equation:

s1 = − b

2m
+

√(
b

2m

)2

− k

m

s2 = − b

2m
−

√(
b

2m

)2

− k

m

6.9.5 Unforced response without damping, with b = 0

m
d2x

dt2
+ b

dx

dt
+ kx = 0, ms2 + k = 0

Roots of the second order system:

s1 = i
√
km, s2 = −i

√
km

Homogeneous solution:

xh(t) = A cos

(√
k

m

)
+B sin

(√
k

m
t

)

Coefficients A and B could be determined by the initial conditions:

x(t = 0),
dx(t)

dx

∣∣∣∣
t=0

Natural frequency of undamped oscillatory motion with radian frequency:

ωn =

√
k

m

Under this frequency, the undamped system would naturally oscillate if the
spring were stretched and the mass is released and allowed to move without
any external force (Fext = 0)
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6.9.6 Unforced response without damping, with b ̸= 0

m
d2x

dt2
+ b

dx

dt
+ kx = 0, ms2 + bs+ k = 0

If the Radicand = 0, the roots of the second-order system are:

Radicand =
√
b2 − 4mk = 0 → b2 = 4mk

s1 = s2 = − b

2m
= −

√
4mk

4m2
= −

√
k

m

Homogeneous solution:

xh(t) = (A+Bt)e−ωntA = πrω2
n =

√
k

m

Coefficients A and B could be determined by the initial conditions:

x(t = 0),
dx(t)

dt

∣∣∣∣
x=0

Solution:
xh(t) = (A+Bt)e−ωnt

This represents an exponential decaying motion.
For critical damping, if the radicand = 0, the critical damping constant is:

bc = 2
√
mk = 2m

√
k

m
= 2mωn

For non-critical damping, if the radicand ̸= 0, the damping ratio is:

ζ =
b

bc
=

b

2
√
mk

Note:

1. Damping ratio is a measure of the proximity to critical damping.

2. A critically damped system has a damping ratio of 1.
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6.9.7 Properties

• Homogeneous equation:

m
d2x

dt2
+ b

dx

dt
+ kx = 0

• Characteristic equation:

ms2 + bs+ k = 0

• Roots of the second-order system

s =
−b±

√
b2 − 4mk

2m

Because:

bc = 2
√
mk = 2m

√
k

m
= 2mωn

ζ =
b

bc
=

b

2
√
mk

• 2 different real roots of the second-order system:

s =
−b±

√
b2 − 4mk

2m

=
− b

bc
±
√

b2

b2c
− 4mk

b2c

2 · m
bc

=
−ζ ±

√
ζ2 − 1

1
ωn

= −ζωn ± ωn

√
ζ2 − 1

Where:

– ζ is the damping ratio

– ωn is the natural frequency
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6.9.8 Under damped system (ζ < 1, with 2 complex conjugate
roots)

• Roots
s1 = −ζωn + iωn

√
1− ζ2

s2 = −ζωn − iωn

√
1− ζ2

• Homogeneous solution:

xh(t) = e−ζωnt
[
A cos

(
ωn

√
1− ζ2t

)
+B sin

(
ωn

√
1− ζ2t

)]
• This motion represents damped oscillation consisting of sinusoidal mo-

tion with exponentially decaying amplitude.

ωd = ωn

√
1− ζ2

• The frequency of oscillation is called the damped natural frequency.

6.9.9 Overdamped system (ζ > 1, with 2 real roots)

• Roots:
s1 = −ζωn + ωn +

√
ζ2 − 1

s2 = −ζωn − ωn +
√
ζ2 − 1

• Homogeneous solution:

xh(t) = Ae

(
−ζ+

√
ζ2−1

)
ωnt +Be

(
−ζ−

√
−ζ2−1

)
ωnt

• This motion represents an exponential decaying output.
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6.9.10 Graphs of unforced responses

With initial conditions:

x(0) = 1,
dx(t)

dt

∣∣∣∣
t=0

= 0
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6.9.11 Summary

Let’s define:

Natural frequency, ωn =

√
k

m

Damping ratio, ζ =
b

2
√
km

We have:

m
d2x

dt2
+ b

dx

dt
+ kx = 0

d2x

dt2
+ 2ζωn

dx

dt
+ ω2

nx = 0

The characteristic equation is:

s2 + 2ζωns+ ω2
n = 0

Whose roots are:
s1 = −ζωn + ωn +

√
ζ2 − 1

s2 = −ζωn − ωn +
√
ζ2 − 1

As Fext = 0 (unforced).

When ζ = 0 (undamped):

xh(t) = a cos(ωnt) +B sin(ωnt)

When ζ < 1 (under damped):

xh(t) = e−ζωnt
[
A cos

(
ωn

√
1− ζ2t

)
+B sin

(
ωn

√
1− ζ2t

)]
When ζ > 1 (overdamped):

xh(t) = Ae

(
−ζ+

√
ζ2−1

)
ωnt +Be

(
−ζ−

√
−ζ2−1

)
ωnt

Where the coefficients A and B are determined from the initial conditions.

78



6.9.12 Forced response of a second-order system

A second-order system will have forced response when Fext(t) ̸= 0. For the
second-order system:

m
d2x

dt2
+ b

dx

dt
+ kx = Fext(t)

Its solution can be obtained by combining a general solution (xh(t)) of its
homogeneous equation, and a particular solution (xp(t)) of the second-order
system.

x(t) = xh(t) + xp(t)

When the external force has step input:

Fext =

{
0 t < 0

Fi t ≥ 0

It is easy to see that the second-order system md2x
dt2

+ bdxdt + kx = Fext(t) has
a particular solution:

xp(t) =
Fi

k

Because:
kFi

k
= Fi
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6.9.13 Solving the homogeneous equation of the forced response
of a second-order system

The homogeneous equation can be solved using the same technique devel-
oped for the unforced response of the second-order system.

As Fext = 0 (unforced response).

When ζ = 0 (undamped):

xh(t) = A cos(ωnt) +B sin(ωnt)

When ζ = 1 (critically damped):

xh(t) = (A+Bt)e−ωnt

When ζ < 1 (under damped):

xh(t) = e−ζωnt
[
A cos

(
ωn

√
1− ζ2t

)
+B sin

(
ωn

√
1− ζ2t

)]
When ζ > 1 (overdamped):

xh(t) = Ae

(
−ζ+

√
ζ2−1

)
ωnt +Be

(
−ζ−

√
−ζ2−1

)
ωnt

6.9.14 Graphs of forced responses

Initial conditions:
x(t = 0) = 0,

dx(t)

dt

∣∣∣∣
t=0

= 0
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6.9.15 Characteristics of a graph of forced response

Where:

• "Steady state value" refers to the value where the system reaches after
all transients have dissipated.

• "Rise time" refers to the time required for the system to go form 10%
to 90% of the steady state value.

• "Over-shoot" is a measure of the amount the output exceeds the steady
state value.

• "Settling time" refers to the time required for the system to settle to
within an amplitude band whose width is a specific ±10% of the steady
state value.
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6.9.16 Forced response amplitude ratio vs frequency ratio graph

Note that ζ = 1√
2
≈ 0.707 provides the best amplitude linearity over the

largest bandwidth.
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7 System modelling and analogies

7.1 System models

The systems on the right-hand side of the image are the system that are
analogous to the models on the left-hand side.
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7.2 Second-order modelling analogies

Generic
quantity

Mechanical
translation

Mechanical
rotation

Electrical Hydraulic

Effort (E) Force (F ) Torque (T ) Voltage (V ) Pressure (P )
Flow (F ) Speed (v) Angular speed

(ω)
Current (i) Volumetric

flow rate (Q)
Displacement

(q)
Displacement

(x)
Angular

displacement
(θ)

Charge (q) Volume (V )

Momentum (p) Linear
momentum
(p = mv)

Angular
momentum
(h = Jω)

Flux linkage
(I = NΦ = Li)

Momentum
Area

(Γ = IQ)

Resistor (R) Damper (b) Rotatory
damper (B)

Resistor (R) Resistor (R)

Capacitor (C) Spring
(
1
k

)
Torsion spring(

1
k

) Capacitor (C) Tank (C)

Inertia (I) Mass (m) Moment of
inertia (J)

Inductor (L) Inertance (I)

Inertia energy
storage (special

case)

F = ṗ
(F = ma)

T = ḣ
(T = Jα)

V = λ̇(
V = Ldi

dt

) P = Γ̇(
P = I dQ

dt

)
Capacitor

energy storage
F = kx T = kθ V = 1

C q P = 1
CV

Dissipative F = bv T = Bω V = Ri P = RQ
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7.3 Similarities and differences

7.3.1 Similarities

• Mathematical representation

• Mathematical solution

• Mathematical properties

7.3.2 Differences

• Constants (coefficients, or parameters)

• Physical meanings of these parameters of the system

7.3.3 Analogies

• For those parameters among the different system types: Resistors,
valves, mass, inertia, . . .

• System terms: Effort, flow, displacement, momentum, resistance, ca-
pacitance, . . .

8 Sampling

8.1 Sampling rate

• Higher sampling rates allow the waveform to be more accurately rep-
resented.

• Low sampling rates may lead the waveform to be less accurately rep-
resented.
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8.2 Analogue vs digital signals

Analogue signal Digital signal
Continuous Discrete
Generated via analogue devices Sampled in a fixed interval
Not coded Coded value
Original signal Sequential data array

8.3 Shannon & Nyquist theorem

The best explanation for the Shannon & Nyquist sampling theorem is this
YouTube video.

8.3.1 Sampling 1Hz sine wave at 2Hz

There are sufficient samples to capture each peak and trough of the signal.
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8.3.2 Sampling 1Hz sine wave at 3Hz

There are more than enough samples to capture the variations in the signal.
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8.3.3 Sampling 1Hz sine wave at 1.5Hz

There isn’t enough samples to capture all the peaks and troughs in the signal,
which results in information being lost.
The signal may also be misinterpreted as a 0.5Hz signal, as shown below:

8.4 Why don’t we sample as fast as possible?

• Sampling as fast as possible results in huge amounts of data.

• It also requires high speed software.

• A lot of storage is needed to store the data.
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8.5 Logic behind the minimum sampling rate

• We need to sample a digital signal at a rate more than 2 times the
maximum frequency (fmax) component in the signal to retain all
frequency components.

• To faithfully represent the analogue signal, the digital samples must
be taken at a frequency fs, such that:

fs > 2fmax

Where:

– fs is the sampling rate (not sampling frequency)
– fmax is the maximum frequency in the signal, also known as the

Nyquist frequency

• If we approximate a signal by a truncated Fourier series (N terms), the
maximum frequency component is the highest harmonic frequency.
Hence, the time interval between the digital samples is:

∆t =
1

fs

8.6 Theorem

F (t) =
N∑

n=0

Cn cos(nω0t+ ϕn)

f(t) =
N∑

n=−N

Dne
inω0t

Where:

• N is the maximum frequency component of the signal

• fs is the sampling rate

• fmax is the Nyquist frequency

8.6.1 Shannon-Nyquist Theorem

fs > 2fmax

Where:

• fs is the sampling rate

• fmax is the Nyquist frequency
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8.6.2 Time interval between the digital samples (∆t)

∆t =
1

fs

Where:

• ∆t is the time interval between the digital samples

• fs is the sampling rate

8.6.3 Sampling 1Hz sine wave at 2Hz

• Maximum frequency component: N = 1

• Nyquist frequency: fmax = 1Hz

• Sampling rate: fs = 2Hz

• Time interval between digital samples: ∆t = 1
2 sec
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8.6.4 Sampling 1Hz sine wave at 1.5Hz

• Maximum frequency component: N = 1

• Nyquist frequency: fmax = 1Hz

• Sampling rate: fs = 1.5Hz

• Time interval between digital samples: ∆t = 1
1.5 = 2

3 sec

8.6.5 Sampling a sine wave with multiple frequencies at 6Hz

• Maximum frequency component: N = 3

• Nyquist frequency: fmax = 3Hz

• Sampling rate: fs = 6Hz

• Time interval between digital samples: ∆t = 1
6 sec
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8.7 Aliasing

8.7.1 Sampling of a clock with only one hand

• Sampling a clock at double the Nyquist frequency:

– Sampling rate: fs =
1
30 Hz

– Nyquist frequency: fmax = 1
60 Hz

– Double Nyquist frequency: fmax = 1
30 Hz

– Aliasing occurs as the receiver cannot tell if the clock is moving
forward or backwards.

• Sampling of a clock above double the Nyquist frequency:

– Sampling rate: fs =
1
15 Hz

– Nyquist frequency: fmax = 1
60 Hz

– Double Nyquist frequency: fmax = 1
30 Hz

– No aliasing occurs as the receiver can tell that the clock is moving
forward.
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• Sampling of a clock under double the Nyquist frequency:

– Sampling rate: fs =
1
45 Hz

– Nyquist frequency: fmax = 1
60 Hz

– Double Nyquist frequency: fmax = 1
30 Hz

– Aliasing occurs as the receiver thinks that the clock is moving
backwards instead of forward.
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8.7.2 Undersampled signal

Below is a signal with a frequency of 8Hz sampled at a rate of 8.5Hz

An undersampled signal can confuse you about its frequency when recon-
structed as the sampling rate is too low.

8.7.3 Reconstruction of a sampled sine wave
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8.7.4 Frequency of aliased signal (fa)

The frequency of an aliased signal (fa) is given as:

fa = |fs · i− fn|

Where:

• fa is the frequency of the aliased signal

• fs is the sampling rate

• i is the closest integer multiple of the sampling rate to the signal being
aliased

• fn is the frequency of the signal being aliased

For example, if the signal is fn = 21Hz and is sampled with fs = 10Hz,
then the aliased frequency would be |i · fs − fn| = |2 · 10− 21| = 1Hz

8.7.5 Capturing the shape of the waveform

Even though sampling at twice the Nyquist frequency will ensure that
you measure the correct frequency of your signal, it will not be sufficient to
capture the shape of the waveform.
If the shape of the waveform is desired, you should sample at a rate approx-
imately 10 times the Nyquist frequency.

8.8 Applications

8.8.1 Recording audio

• The range of human hearing is 20− 20, 000 Hz.

• We lose high frequency response with age.

• Women generally have better response than men.

• To reproduce an audio signal of 20 kHz requires a sampling rate of at
least 40 kHz.

• Below the sampling rate of 40 kHz, aliasing will occur, according the
Shannon-Nyquist Theorem.
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8.8.2 Digital voice telephone transmission

• Voice data for telephone purposes is limited to frequencies less than
4 kHz.

• According to the Shannon-Nyquist Theorem, it would take 8,000 sam-
ples 2 · 4, 000 to capture a 4, 000 Hz signal perfectly.

• Generally, one byte is recorded per sample (256 levels). One byte is
eight bits of binary data.

• 8 bits · 8, 000 samples per second = 64 kbps over a circuit.
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9 Quantisation and encoding

9.1 Digitising

9.2 Pulse code modulation (PCM)

• Pulse code modulation consists of three steps to digitise an analogue
signal:

1. Sampling

2. Quantisation

3. Binary encoding

• Before we sample, we have to filter the signal to limit the maximum
frequency of the signal as it affects the sampling rate.

• Filtering should ensure that we do not distort the signal by removing
high frequency components that affect the signal shape.
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9.2.1 Components of a PCM encoder

9.2.2 Sampling methods and pulse amplitude modulation (PAM)

• The analogue signal is sampled every Ts secs.

• Ts is known as the sampling interval.

• fs =
1
Ts

is called the sampling rate or sampling frequency.

• There are 3 sampling methods:

1. Ideal, which is an instant pulse at each sampling instant.

2. Natural, which is a pulse of short width with varying amplitude.

3. Flat top, which is to sample and hold the value. It is similar
to the natural sampling method, but with a constant amplitude
value.

• This process is known as pulse amplitude modulation (PAM) and the
outcome is a signal with analogue (non-integer) values.
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9.2.3 Images of the sampling methods
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9.3 Quantisation

• Sampling results in a series of pulses of varying amplitude values rang-
ing between two limits: a minimum and a maximum value.

• The amplitude values are finite between the two limits.

• We need to map the finite amplitude values onto a finite set of known
values.

• This is achieved by dividing the distance between the minimum and
maximum into L zones, each of height ∆

∆ =
max−min

L
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9.3.1 Analogue quantisation size (code width) (Q)

Q =
Vmax − Vmin

N

Where:

• Q is the analogue quantisation size

• Vmax is the maximum voltage value

• Vmin is the minimum voltage value

• N is the number of zones

Example:

• Given N = 8, Vmax = 10V, Vmin = 0V.

• Analogue quantisation size of code width: Q = Vmax−Vmin
N = 10−0

8 =
1.25V

• This means that the amplitude of the digitised signal has an error of
at most 1.25V.

• Therefore, the A/D converter can only resolve a voltage within 1.25V
of the exact analogue voltage.
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9.3.2 Quantisation vs encoding

• Quantisation is the transformation of a continuous analogue input into
a set of discrete output states.

• Encoding is the assignment of a digital code word or number to each
output state.

• Each output state covers a subrange of the overall voltage range.

• The step-stair signal represents the states of a digital signal generated
by sampling a linear ramp of an analogue signal occurring over the
voltage range.

• The figure shows how a continuous voltage range is divided into discrete
output states, each of which is assigned a unique code.
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9.3.3 Analogue-to-digital (A/D) converter

• An analogue-to-digital converter is an electronic device that converts
an analogue voltage to a digital code.

• The output of the analogue-to-digital converter can be directly inter-
faced to a digital device, like a microcontroller of a computer.

• The resolution of an analogue-to-digital converter is the number of bits
used to digitally approximate the analogue value of the input.

• The number of possible states N is equal to the number of bit combi-
nations that can be produced from the converter:

N = 2n

Where:

– N is the number of possible states

– n is the number of bits

• Most commercial analogue-to-digital converters are an 8, 10 or 12-bit
device, with 256 (28), 1024 (210), or 4096 (212) states respectively.

9.3.4 Mid-points

• The midpoint of each zone is assigned a value from 0 to L−1, resulting
in L values.

• Each sampling falling in a zone is then approximated to the value of
the midpoint.

103



9.3.5 Quantising zones and mid-points

• Assume a voltage signal with amplitudes Vmin = −20V and Vmax =
20V.

• Using L = 8 quantisation levels.

• Zone width: ∆ = 20−(−20)
8 = 5

• The 8 zones are:

– -20 to -15

– -15 to -10

– -10 to -5

– -5 to 0

– 0 to +5

– +5 to +10

– +10 to +15

– +15 to +20

• The mid-points are:

– -17.5

– -12.5

– -7.5

– -2.5

– 2.5

– 7.5

– 12.5

– 17.5
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9.3.6 Assigning codes to zones

• Each zone is then assigned a binary code.

• The number of bits required to encode the zones, or the number of bits
per sample, is obtained as follows:

nb = log2L

Where:

– nb is the number of bits to encode the zone.

– L is the number of zones

• In the example above, nb = 3.

• The 8 zone codes are therefore:

– 000

– 001

– 010

– 011

– 100

– 101

– 110

– 111

• Assigning codes to the zones:

– 000 will refer to zone -20 to -15

– 001 will refer to zone -15 to -10

– 010 will refer to zone -10 to -5

– 011 will refer to zone -5 to 0

– 100 will refer to zone 0 to +5

– 101 will refer to zone +5 to +10

– 110 will refer to zone +10 to +15

– 111 will refer to zone +15 to +20
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9.3.7 Quantisation and encoding of a sampled signal
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9.3.8 Quantisation error

• When a signal is quantised, an error is introduced as the encoded signal
is an approximation of the actual amplitude value.

• The difference between the actual and encoded value (mid-point) is
known as the quantisation error.

• The greater the number of zones, the smaller the width of the zone
(∆), which results in smaller errors.

• However, increasing the number of zones will also increase the number
of bits required to encode the samples, which will increase the bit rate.
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10 Amplifiers

An amplifier increases the amplitude of a signal without affecting the phase
of the different components of the signal. This means the voltage gain should
be constant for all frequencies.

10.1 Relationship between output and input

Vout = AvVin

Where:

• Av is the gain. Ideally, Av is constant for all frequencies, but there is
a bandwidth associated with cut-off frequencies.

10.2 Filtering and amplifier linearity

• Amplifiers are designed for certain frequencies instead of all frequen-
cies.

• Output characteristics are governed by the amplifier’s bandwidth.

• There are associated cut-off frequencies (thresholds) for amplifiers.
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10.3 Characteristics of amplifiers

• Size

• Cost

• Power consumption

• Input impedance

• Output impedance

• Gain

• Bandwidth

10.3.1 Input impedance (Zin)

Most amplifiers are designed to have:

• Large input impedance

• As little current as possible is drawn from the input

The input impedance Zin is given by:

Zin =
Vin

Iin

Where:

• Zin is the input impedance

• Vin is the input voltage

• Iin is the input current

The input impedance should be large to have little current drawn from the
input.
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10.3.2 Output impedance (Zout)

• The voltage drop ∆Vout is a measure of how much the output voltage
drops with the output current.

• Most of the amplifiers are designed to have a very small output impedance,
so the output voltage will not change much as the output current
changes.

Output impedance Zout is:

Zout =
∆Vout

Iin

Where:

• ∆Vout is the voltage drop measured relative to the output voltage with
no current. The output impedance should be small to have little change
when the output current changes.

10.4 Operational amplifiers

10.4.1 Characteristics

1. Low-cost.

2. Versatile integrated circuits.

3. Single chip consisting of internal transistors, resistors, and capacitors.

4. Combined with external discrete components to create a wide variety
of signal processing circuits.

10.4.2 Basic block of amplifiers

Amplifiers Integrators Summers
A/D converters D/A converters Differentiators
Active filters Sample & hold amplifiers Comparators
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10.4.3 Functions

• Inverting amplifiers

• Non-inverting amplifiers

• Summer amplifiers

• Difference amplifiers

• Integrator amplifiers

• Differentiator amplifiers

10.4.4 Schematic and nomenclature

• A differential input

– The inverting input (−)

– The non-inverting input (+)

• Single output

• Infinite gain (∞)

• The voltages are all referenced to a common ground.
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10.4.5 Output voltage

Vout = AvVin

V3 = A(V2 − V1)

The output voltage is proportional to the difference between the two inputs
of the amplifier.

10.4.6 How to control the gain?

The feedback loop is connected from the output to the inverting input (−).
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10.4.7 Closed loop vs open loop configuration

Closed loop configuration Open loop configuration
When feedback is present When feedback is absent
Stabilisation of the amplifiers Considerable instability due to the high gain
Control of the gain Seldom used

10.4.8 Ideal model for operational amplifiers

Infinite impedance at both inputs.

• No current is drawn from the input circuits.

• Therefore, I+ = I− = 0.

Infinite gain, assuming no current flow between the short of the two inputs.

• The difference between the input voltages must be 0, otherwise the
output would be infinite.

• Therefore, V+ = V−.

Zero output impedance.

• The output voltage does not depend on the output current.

Note that Vout, V+ and V− are all referenced to the same ground, and there
must be feedback between the output and the inverting input for stable linear
behaviour.
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10.4.9 Summary of the ideal operational amplifier

• The ideal operational amplifier has infinite impedance at both inputs,
so no current is draw from the input circuit: I+ = I− = 0.

• It has infinite gain, so the difference between input voltages is zero:
V+ = V−.

• It has zero output impedance, so the output voltage does not depend
on output current.

• The open-loop gain is a very large, and can be considered as infinite.

• The input impedances of the two terminals are very large, and can be
considered as infinite.

• The output impedance is very small, and can be considered as zero.

10.4.10 Real operational amplifier

Packaging

• Eight pins and dual inline package (DIP) integrated circuit or a chip.

• 741 is the designation of a general purpose operational amplifier by
many manufacturers.
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10.4.11 Pin configuration (pin-out)

• One indentation or spot

• The pins are numbered counterclockwise

• Pin 2: Inverting input (−)

• Pin 3: Non-inverting input (+)

• Pin 4: External power supply (−15V)

• Pin 7: External power supply (15V)

• Pin 6: The operational amplifier output

• Pins 1, 5 and 8: Not normally used, no connections are required
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10.5 Inverting amplifier

An inverting amplifier inverts and amplifies the input voltage.

• It is constructed by connecting two external resistors to an operational
amplifier.

• This circuit inverts and amplifies the input voltage.

• The resistor RF forms the feedback loop.

– The loop always goes from the output to the inverting input of
the operational amplifier, so the feedback loop is negative.
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10.5.1 Equivalent circuit

At node C:
Iin = −Iout, Vc = 0

Where:

• Iin is the input current

• Iout is the output current

• Vc is the voltage at node C

Since no current flow into inputs of the operational amplifier, voltage across
the resistor R is Vin − Vc = Vin, from Ohm’s law:

Vin = IinR

Where:

• Vin is the input voltage

• Iin is the input current

• R is the resistance of the resistor R

Voltage across the resistor RF is Vout − Vc = Vout, from Ohm’s law:

Vout = IoutRF = −IinRF

Vout

Vin
= −RF

R

Where:

• Vout is the output voltage

• Vin is the input voltage

• RF is the resistance of resistor RF

• R is the resistance of resistor R
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10.5.2 Characteristics

• The voltage gain of the amplifier is determined simply by the external
resistors RF and R.

• The voltage gain of the amplifier is always negative.

• An example of an inverting (−) amplifier:

10.6 Non-inverting amplifier

A non-inverting amplifier amplifies the input voltage without inverting the
signal.
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10.6.1 Equivalent circuit

At node C:

Vc = Vin, Vin = −IinR, Iin + Iout = 0

Voltage across RF :

Vout = IoutRF + Vin

∴
Vout

Vin
=

IoutRF + Vin

−IinR

=
IoutRF − IinR

−IinR

=
−IinRF − IinR

−IinR

= 1 +
RF

R

10.6.2 Summary

• A non-inverting amplifier amplifies the input without inverting the
signal.

• It has a positive gain greater than or equal to 1.
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10.7 Summer amplifier

VoutN = −RF

RN
VN

Vout1 = −RF

R1
V1

Vout2 = −RF

R2
V2

Vout = −
(
RF

R1
V1 +

RF

R2
V2 +

RF

RN
VN

)
10.7.1 Equivalent circuit

V1

R1
+

V2

R2
= −Vout

RF

• The summer amplifier is also known as the adder.

• It adds another analogue signal.

• The output is the negative sum of the inputs.
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10.8 Difference amplifier

A difference amplifier circuit is used to subtract analogue signals.

V1 − I1R1 = V2 − I2R2 = I2RF

Vout = −I1RF − I1R1 + V1

Hence:
I2 =

V2

RF +R2
→ I1 =

V1

R1
− V2

RF +R2

RF

R1

So:
Vout = V1 − (RF +R1)

(
V1

R1
− V2

RF +R2

RF

R1

)
If R1 = R2 = R,

Vout =
RF

R1
(V2 − V1)
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10.9 Integrator

The integrator circuit is created by replacing the feedback resistor of the
inverting operation amplifier circuit with a capacitor.

dVout

dt
=

Iout
C

= −Iin
C

= − Vin

RC
So:

Vout(t) = − 1

RC

∫ t

0
Vin(τ) dτ

10.9.1 Practical integrator

C
dVout

dt
+

Vout

Rs
= Iout = −Iin = −Vin

R1

So:
dVout

dt
+

1

CRs
Vout =

1

R1C
Vin

Should choose:
Rs > 10R1, R2 = − R1Rs

R1 +Rs

The reason is R2 is an approximation of the parallel combination of R1 and
Rs to minimise the DC offset due to the input current bias.
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10.10 Differentiator

The input resistor of the inverting operational amplifier circuit is replaced
by a capacitor to form a differentiator circuit.

dVin

dt
=

Iin
C

= −Iout
C

= −Vout

RC

So:
Vout = −RC

dVin

dt

123



10.11 Sample and hold circuit

1. It is extensively used in analogue-to-digital conversion.

2. Its signal value must be stabilised while it is converted to a digital
representation.

3. It consists of voltage-holding capacitor and a voltage follower.

4. It works while the switch is closed.

When switch S is closed:
Vout(t) = Vin(t)

Vout(t− tsampled) = Vin(tsampled)

The capacitor C should be one with low leakage.
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10.12 Comparator

• A comparator is used to determine whether one signal is greater than
another.

• The comparator is an example of an operational amplifier circuit where
there is no negative feedback and the circuit exhibits infinite gain.

• The result is that the operational amplifier saturates.

• Saturation means that the output remains at its most positive or most
negative output value.

Vout =

{
+Vsat, Vin > Vref

−Vsat, Vin < Vref

Where:

• Vsat is the saturation voltage of the comparator. Most comparators
are specially built.
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10.13 Instrumentation amplifier

• An instrumentation amplifier is used for subtracting analogue signals.

• It does not invert the signal, like a non-inverting amplifier.

The left side:
V3 − V1 = I1R2

V2 − V4 = I1R2

V1 − V2 = I1R1

The right side:
V3 − I3R3 = V4 − I4R3 = I4R5

Vout = −I3R4 − I3R3 + V3

Where:

• I3 is the current through R3

• I4 is the current through R4
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So:
V3 =

(
R2

R1
+ 1

)
V1 −

R2

R1
V2

V4 =

(
R2

R1
+ 1

)
V2 −

R2

R1
V1

Vout =
R5(R3 +R4)

R3(R3 +R5)
V4 −

R4

R3
V3

If R4 = R4, then:

Vout

[
R4

R3

(
1 + 2 · R2

R1

)]
(V2 − V1)

So if V1 = V2, then Vout = 0. In practice, we need a variable resistor R2 to
tune such that R4 = R5.

10.13.1 Why use instrumentation amplifiers?

• A difference amplifier may be satisfactory for low-impedance source,
but its input impedance is too low for high-output impedance source.

• If the levels of the input signals are very low and the signals include
noise, the difference amplifier is unable to extract a satisfactory differ-
ence signal.

• The instrumentation amplifier is a solution for this problem.
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10.13.2 Characteristics

• The instrumentation amplifier has very high input impedance.

• Large common mode rejection ratio (CMRR), which is the ratio of the
difference mode gain to the common mode gain.

• The difference mode gain is the amplification factor for the difference
between the input signals.

• The common mode gain is the amplification factor for the average of
the input signals.

• For an ideal difference amplifier, the common mode gain is 0, implying
an infinite common mode rejection ratio.

• It is desirable to minimise the common mode gain to suppress signals
such as noise that are common to both inputs.

• The instrumentation amplifier also has the capability to amplify low-
level signals in a noisy environment, which is often a requirement in
applications with differential output and signal conditioning.

• It also has a consistent bandwidth over a large range of gains.

11 Analogue-to-digital (A/D) conversion

11.1 Data acquisition (DAQ) devices
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11.1.1 Flow chart

Sensor

↓

DAQ device

↓

Computer bus

↓

Computer

↓

Driver software

↓

Application software

↓

Data storage format

↓

Analysis tools

↓

Visualisation tools

↓

Reporting tools

11.1.2 Examples

Sensor Phenomenon
Thermocouple, thermistor Temperature
Photo sensor Light
Microphone Sound
Strain gage, piezoelectric transducer Force and pressure
Potentiometer, optical encoder Position and displacement
Accelerometer Acceleration
pH electrode pH
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11.2 A/D conversion

1. Buffer amplifier

• Isolates the output from the input.

• Provides a signal in a range close to but not exceeding the full
input voltage range of the A/D converter.

2. Low pass filter

• Necessary to remove any undesirable high-frequency components
in the signal that could produce aliasing.

• The cut-off frequency of the low-pass filter is less than half of the
sampling rate.

3. Sample and hold amplifier

• This amplifier maintains a fixed input value from an instantaneous
sample during the short conversion time of the A/D converter.

4. A/D converter

• The converter should have a resolution and analogue quantisation
size appropriate for the system and the signal.

5. Computer and memory

• The computer must properly interface with the A/D converter
system to store and process the data.

• It also needs to have sufficient memory and storage to store the
data.
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11.2.1 Definition

• An electronic integrated circuit which transforms a signal from ana-
logue (continuous) to digital (discrete) form.

• Analogue signals are directly measurable quantities.

• Digital signals only have two states. For the digital computer, we refer
to the binary states: 0 and 1.

11.2.2 Why do we need analogue-to-digital conversion?

• Microprocessors can only perform complex processing on digitised sig-
nals.

• When signals are in digital form, they are less susceptible to the dele-
terious effects of additive noise.

• A/D conversion provides a link between the analogue world of trans-
ducers and the digital world of signal processing and data handling.

11.3 A/D conversion process

1. Sampling and holding (S/H)

2. Quantising and encoding (Q/E)
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11.3.1 Sampling and holding

• Holding the signal benefits the accuracy of the A/D conversion.

• The minimum sampling rate should be at least twice the highest data
frequency of the analogue signal.
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11.3.2 Resolution

• The resolution is the smallest change in the analogue signal that will
result in a change to the digital output.

∆V =
Vref

2n

Where:

– ∆V is the resolution

– n is the number of bits in the digital output

– 2n is the number of states

– Vref is the reference voltage range

• The resolution represents the quantisation error inherent in the con-
version of the signal to digital form.
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11.3.3 Quantising and encoding

• Quantising refers to partitioning the reference signal range into a num-
ber of discrete quanta, then matching the input signal to the correct
quantum.

• Encoding refers to assigning a unique digital code to each quantum,
then allocating the digital code to the input signal.

134



11.3.4 Ways to improve the accuracy of the A/D conversion

1. Increase the resolution, which improves the accuracy in measuring the
amplitude of the analogue signal.

2. Increasing the sampling rate, which increases the maximum frequency
that can be measured.

11.3.5 Advantages of A/D conversion

• A digital signal is superior to an analogue signal, as it is more robust
to noise and can easily be recovered, corrected and amplified.

• For this reason, most analogue signals will be changed to their digital
forms.

11.3.6 Applications of A/D conversion

• Analogue-to-digital converters are used virtually everywhere where an
analogue signal has to be processed, stored, or transported in digital
form.

• Some examples include:

– Cell phones

– Thermocouples

– Digital oscilloscopes

– Digital voltmeters
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11.3.7 Time taken for the A/D conversion

• The setting time depends on:

– The design of the converter.

– The method used for conversion.

– The speed of the components used in the electronic design.

• Because the analogue signal changes continuously, the uncertainty when
the conversion occurs (in the sample time window), causes the corre-
sponding uncertainty in the digital value.

• This is of particular concern if there is no sample and hold amplifier
on the analogue-to-digital input.

11.3.8 Aperture time

• The aperture time refers to the duration of the time between each
reading of the analogue-to-digital converter.

• It is associated with any error in the digital output due to changes in
the input during this time.

• The relationship between the aperture time and the uncertainty in the
input amplitude is shown below:

During the aperture time, the input signal changes by ∆V (t), where:

∆V (t) =
dV (t)

dt
∆Ta
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11.4 A/D converters

Design principles of A/D converters

1. Successive approximation.

2. Flash or parallel encoding.

3. Single-slope and dual-slope integration.

4. Switched capacitor.

5. Delta sigma.

Other principles include:

• Voltage-to-frequency.

• Staircase ramp or single slope.

• Charge balancing or redistribution.

• Tracking, synchronising or resolving.

Note that design principles 1 (successive approximation) and 2 (flash or
parallel encoding) occurs the most often.

11.4.1 Successive approximation

1. A/D converters designed based on successive approximation is very
widely used as it is relatively fast and cheap.

2. A successive approximation A/D converter uses a digital-to-analogue
(D/A) converter in a feedback loop.

3. When the start signal is sent, the sample and hold (S & H) amplifier
latches the analogue input.

4. The control unit begins an iterative process, where the digital value is
approximated, converted to an analogue value with the D/A converter,
and compared to the analogue input with the comparator.

5. When the D/A output equals the analogue input, the end signal is set
by the control unit and the correct digital output is available at the
output.
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11.4.2 Successive approximation A/D converter circuit

• The circuit uses an n-bit digital-to-analogue converter to compare the
results from the digital-to-analogue converter and the original analogue
results.

• It uses a successive approximation register (SAR) to supply an approx-
imate digital code to the digital-to-analogue converter of Vin.

• It compares the change in digital output to bring it closer to the input
value.

• The circuit uses closed-loop feedback conversion.

Output:
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11.4.3 Successive approximation pros and cons

Pros Cons
High speed and good reliability For higher resolution successive

approximation, analogue-to-digital
converters will be slower

Medium accuracy compared to
other analogue-to-digital converter
types.

Speed limited to about 5 millisec-
onds per sample.

Good tradeoff between speed and
cost.
Capable of yielding the binary num-
ber in a serial format (one bit at a
time).

11.4.4 Successive approximation flow chart
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11.4.5 A/D converter flow chart

11.4.6 Example of a 4-bits A/D converter

The digital result 0110. A higher resolution will produce more accurate
results.
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11.4.7 Conversion time

• An n-bit successive approximation A/D converter has a conversion
time of n∆T , where ∆T is the cycle time of the digital-to-analogue
converter and the control unit.

• The typical conversion time for 8, 10, or 12-bit successive approxima-
tion A/D converters ranges from 1 to 100 µs

11.4.8 Example of a 10-bit A/D converter

• Number of bits: n = 10

• Voltage input: Vin = 0.6V

• Reference voltage: Vref = 1V

Bit Voltage
9 0.5
8 0.25
7 0.125
6 0.0625
5 0.03125
4 0.015625
3 0.0078125
2 0.00390625
1 0.001952125
0 0.0009765625

Number of possible states: N = 2n = 1024

Resolution: ∆V =
Vmax − Vmin

N

=
1V

1024
= 0.0009765625× Vref
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11.4.9 Process of calculating the most significant bit (bit 9)

1. Divide Vref by 2, V =
Vref

2 = 0.5.

2. Compare V with Vin.

3. If Vin is greater than V , turn the most significant bit (MSB) on (set
to 1).

4. If Vin is less than V , turn the most significant bit off (set to 0).

5. Vin = 0.6V and V = 0.5.

6. Since Vin > V , MSB = 1

11.4.10 Process of calculating the most significant bit - 1 (bit 8)

1. V =
Vref

2 +
Vref

4 = 0.5 + 0.25 = 0.75V.

2. Compare Vin to V .

3. Since 0.6 < 0.75, the current most significant bit is turned off (set to
0).
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11.4.11 Process of calculating the most significant bit - 2 (bit 7)

1. Go back to the last voltage that caused it to be turned on (bit 9) and
add it to Vref

8 .

2. Hence, V =
Vref

2 +
Vref

8 = 0.5 + 0.125 = 0.625V

3. Since 0.6 < 0.625, the current most significant bit is turned off (set to
0).

11.4.12 Process of calculating the most significant bit - 3 (bit 6)

1. Go back to the last voltage that caused it to be turned on (bit 9) and
add it to Vref

16 .

2. Hence, V =
Vref

2 +
Vref

16 = 0.5 + 0.06250.5625V

3. Since 0.6 > 0.5625, the current most significant bit is turned on (set
to 1).

This process continues for all the remaining bits:

Results:
1

2
+

1

16
+

1

32
+

1

256
+

1

512
= 0.599 609 375V
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11.5 Flash A/D converters

• Has N − 1 comparators.

• Has N resistors.

11.5.1 How does it work?

• It uses the N resistors to form a ladder voltage divider, which divides
the reference voltage into N equal intervals.

• It uses the N−1 comparators to determine in which of these N voltage
intervals the input voltage Vin lies.

• The combination logic then translates the information provided by the
output of the comparators.

• This analogue-to-digital converter does not require a clock, so the con-
version time is set by the settling time of the comparators and the
propagation time of the combinational logic.
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11.5.2 Pros and cons of flash A/D converters

Pros Cons
Very fast. Expensive.
Very simple operational theory. Prone to produce glitches in the

output.
Speed is only limited by gate and
comparator propagation delay.

Each additional bit of resolution re-
quires twice the comparators.

11.5.3 Characteristics

• The fastest type of analogue-to-digital converter.

• It consists of a bank of input comparators acting in parallel to identify
the signal level.

• The figure below shows a 2-bit converter with a resolution for output
states.

• The output of the latches is in a coded form, which is easily converted
to the required binary output with combinational logic.
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11.5.4 Output of a 2-bit flash converter

State Code (G2 G1 G0) Binary (B1 B0) Voltage Range
0 000 00 0 - 1
1 001 01 1 - 2
2 011 10 2 - 3
3 111 11 3 - 4

This assumes:

• An input voltage range of 0 to 4V.

• The voltage rage is set by the Vmin and Vmax.

• The code converter is a simple combinational logic circuit.

• For a 2-bit converter, the relationship between the code bit Gi and the
binary bits Bi are:

V0 = G0 ·G1 +G2

B1 = G1
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11.6 Dual slope converters

Components:

• Integrator

• Electronically controlled switches

• Counter

• Clock

• Control logic

• Comparators

• Resistor

• Capacitor

147



11.7 Sigma-delta A/D converters

Components:

• Resistors

• Capacitor

• Comparators

• Control logic

• Digital-to-analogue converter

11.7.1 How does it work?

• The input is over sampled and goes to the integrator.

• The integration is then compared to the ground.

• It then iterates and produces a serial bit stream.

• The output is a serial bit stream with the number of 1’s proportional
the Vin.

• With this arrangement, the sigma-delta modulator automatically ad-
justs its output to ensure that the average error at the quantiser output
is zero.

• The integrator value is the sum of all past values of the error. Hence,
whenever there is a non-zero error value, the integrator value just keeps
building until the error is once again forced to zero.
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11.7.2 Pros and cons of sigma-delta A/D converters

Pros Cons
High resolution Slow due to over sampling
No need for precision components Only good for low bandwidth

11.8 Comparison of different types of A/D converters

Type Speed (Relative) Cost (relative)
Dual-slope Slow Medium
Flash Very fast High
Successive approximation Medium fast Low
Sigma-delta Slow Low

• Adding more resolution is a simple matter of adding more resistors,
comparators and latches.

• The combinational logic code converter would also be different.

• Unlike with the successive approximation converter, adding resolution
does not increase the time required for a conversion.

11.9 Digital-to-analogue (D/A) conversion

• It is to reverse the process of A/D conversion by changing a digital
value to an analogue voltage.

• Digital-to-analogue conversion allows a computer to interface with ex-
ternal analogue circuits and devices.
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11.9.1 Example of a D/A converter

11.9.2 Problems with D/A conversion

• Finite word length.

– Most systems today do 16-bit digitising.

– Hence, there are 65536 different levels.

• The loudest sounds need room, so the normal sounds don’t make use
of the entire range.

– Problems occur at low levels where sounds are represented by only
one or two bits, which results in a lot of distortion.

• Dithering adds low level broadband noise.
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11.10 D/A conversions

11.10.1 How to do D/A conversions?

The simplest type of D/A converter is a resistor ladder network connected to
an inverting summer operational amplitude circuit. Below is a 4-bit R− 2R
resistor ladder network which requires only two precision resistance values
R and 2R.
Note:

• The digital input to the digital-to-analogue converter is a 4-bit binary
number represented by bits B0, B1, B2, and B3.

• B0 is the least significant bit and B3 is the most significant bit.

• Each bit in the circuit controls a switch between the ground and the
inverting input of the operational amplifier.
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11.10.2 When B0 of the D/A converter is 0001

B0 is the least significant bit. If the bit number is 0001, then the B0 switch
connects to the operational amplifier, while the others are grounded.

Since the inverting operational amplifier is grounded, we have:

Vout0 = −1

2
V0

V0 =
1

2
V1, V1 =

1

2
V2, V2 =

1

2
V3 =

1

2
Vs

So:
Vout0 = − 1

16
Vs

Vout1 = −1

8
Vs, Vout2 = −1

4
Vs, Vout3 = −1

2
Vs

Total output:

Vout =
n−1∑
i=0

BiVouti
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12 1st order systems

In general, the time response of a first order system is:

x(t) = a+ be−
t
τ

Where:

• x is the response of the system

• t is the time

• a and b are arbitrary constants to be determined

• τ is the time constant
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12.1 Example

Thermal measurements:

• Heat:
q =

Tb − Ts

R

Where:

– R is the thermal resistance

• Change in heat:
dTs

dt
=

q

C

Where:

– q is the heat
– C is the thermal capacitance

• If dTb
dt = 0:

Ts(t) = Ts0 + (Tb − Ts0)(1− e−
t

RC )
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12.2 General (forced) equation

dx(t)

dt
+

x(t)

τ
= f(t)

x(0) = x0

Where:

• τ is the time constant

• f(t) is the forced input

• x0 is the initial condition

12.3 Natural (unforced) equation

dxN (t)

dt
+

xN (t)

τ
= 0

x(0) = x0

xN (t) = x0e
− t

τ

Satisfying the initial conditions:

xN (t) = Ke−
t
τ

xN (0) = K = x0

Where:

• τ is the time constant

• f(t) is the forced input

• x0 is the initial condition
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12.4 Time constant

12.4.1 RC circuits

RC =
V

I
· Q
V

=
Q
Q
t

= t

Where:

• R is the resistance of the resistor

• C is the capacitance of the capacitor

• V is the voltage

• I is the current

• Q is the total charge

• t is the time
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12.4.2 RL circuits

L

R
=

V
I
t

· I

V
= t

Where:

• R is the resistance of the resistor

• L is the inductance of the inductor

• V is the voltage

• I is the current

• t is the time
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12.5 Response to DC forcing inputs

Given:
dx(t)

dt
+

x(t)

τ
= F0

x(0) = x0

Where:
f(t) = F0

Looking for a particular (forced) solution xF (t), and considering a DC
steady-state solution:

�
�
�dxSS

dt
+

xSS
τ

= F0

xSS
τ

= F0

xSS = F0τ = x∞

Determining a general solution:

• Including the natural solution:

x(t) = xN (t) + xSS(t) = Ke−
t
τ + x∞

• Satisfying the initial condition:

x(0) = K + x∞ = x0

Hence, the general solution is:

x(t) = (x0 − x∞)e−
t
τ + x∞
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12.6 2nd order systems

We can indirectly estimate the force from a displacement measurement:

• Dynamic equations:
F = mẍ+ bẋ+ kx

• Frequency response:

X

F
=

k−1

−ω2

ω2
0
+ jω

Qω0
+ 1
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12.6.1 Frequency response

X

F
=

k−1

−ω2

ω2
0
+ jω

Qω0
+ 1

• Resonance:
ω2
0 =

k

m

• Mechanical Q:

Q2 =
km

b

When Q = 0.5, the system is critically damped.

160



12.6.2 Time response

• Rise time

• Settling time

• Overshoot
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13 Measuring temperature

13.1 Temperature scales

C = K − 273.15

F = 1.8 · C + 32

Where:

• C is the temperature in degree Celsius

• K is the temperature in Kelvin

• F is the temperature in degree Fahrenheit

These temperature scales are based on:

• Fixed-points, such as the temperatures at phase transitions, triple
points, etc.

• Size of the degree, such as 1
100 of the difference between icy and boiling

water.

• Interpolation in between fixed points, like does 50 ◦C correspond to the
level of mercury which is halfway between the 0 ◦C and 100 ◦C levels?

Temperature scales are standardised using the ITS-90 standard.
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13.2 Bimetallic thermometers

• Makes use of differential thermal expansion of different metals.

– Metal A and B bonded at temperature T1.

– Bending occurs at different temperatures.

• Furnace thermostat, which makes uses of a switch to control the tem-
perature.
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13.3 Resistance temperature detectors (RTD)

• Resistance temperature detectors are based on changes of resistance
with temperature.

– Usually, they are a metal wire on insulating support, which
eliminates mechanical strain.

– They are also encased, to minimise the influence from the envi-
ronment, such as corrosion.
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13.3.1 Linearity range

• For a given material, a linear relationship can be assumed for a limited
range.

R

R0
= 1 + α(T − T0)

Where:

– R is the resistance at temperature T

– R0 is the resistance at temperature T0

– α is the temperature coefficient

• For platinum:

– ±0.3% over the range 0− 200 ◦C

– ±1.2% over the range 200− 800 ◦C
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13.3.2 Wheatstone bridge

• Bridge equations:
V+

Vi
=

R2

R1 +R2

V−
Vi

=
R4

R3 +R4

Vo

Vi
=

R2

R1 +R2
− R4

R3 +R4

• Bridge balance condition:

Vo = 0 ⇔ R1R4 = R2R3
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13.3.3 Numerical example

• An RTD forms one arm of an equal-arm Wheatstone bridge:

R0 = R0 = 25Ω

At 0 ◦C, RTD = 25Ω and α = 0.003 925 ◦C−1

• If the R3 required to balance the bridge is 37.36Ω, find the temperature
of the RTD.

• Solution using the bridge-balance condition:

��R0 ∗RTD = R1 ∗��R0

RTD = R1 = 37.36Ω

For RRTD
R0

= 1 + α(T − T0):

37.36Ω

25Ω
= 1 + 0.003925(T − 0)

T = 126 ◦C
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13.3.4 Measurements

• Wheatstone bridge has low resistance (conductors) and is subject to
self-heating.

• Lead-wire effects:

– 2-wires:

Long wires are also subject to temperature-resistance changes:

RTD + 2 · r0 = R1

– 3-wires:

RTD + r0 = R1 +R0 → RTD = R1

– 4-wires:
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13.4 Thermistors

Thermistors are thermally sensitive resistors.

• They are made of ceramic-like semiconductors.

– R0 is much larger than RTD.

• The resistance decreases rapidly with temperature.

– High-sensitivity

– Ruggedness

– Fast time-response

R = R0e
β
(

1
T
− 1

T0

)
Where:

• R is the current resistance

• R0 is the initial resistance

• β is the material constant

• T is the current temperature in Kelvin (K)

• T0 is the initial temperature in Kelvin (K)
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13.4.1 Examples
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14 Measuring displacement (resistive sensors)

14.1 Resistive sensors

• Potentiometer, also known as a "pot".

– 3-terminal electromechanical device based on a conductive wiper
sliding against a fixed, resistive element.

– Many varieties of varying qualities and for different functions.
Some examples include rheostats, trimmers, volume control, etc.

– Precision potentiometers, which are manually or digitally tun-
able.
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14.1.1 Using potentiometers in electrical circuits

• Voltage divider

• Variable resistance
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15 Measuring forces through displacement

Force sensors.

15.1 Strain gauges

Force measurements are always made indirectly via deformations.
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15.2 Piezo-resistive force sensor
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16 Measuring displacement (inductive sensors)

16.1 Linear variable differential transformer (LVDT)

A linear variable differential transformer is a type of electrical transformer
that measures linear displacement.

• It has variable coupling via sliding ferromagnetic core.

– One primary coil driven by AC, usually in kHz.
– Two secondary coils

• Differential voltage:

Vout = ∆V = V2 − V1 ≃ x(t)V0
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16.1.1 Amplitude modulation

The amplitude of the output voltage is modulated by the physical displace-
ment:

∆V ≈ V0x(t) = sin(ω0t) sin(ωxt)

Figure 1: V0 = sin(ω0t)

Figure 2: x(t) = sin(ωxt)

Figure 3: ∆V = sin(ω0t) sin(ωxt)
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16.1.2 Amplitude demodulation

V0 = sin(ω0t)

x(t) = sin(ωxt)

⇓

sin(ωxt) sin
2(ω0t)

⇓

sin(ωxt)
1− cos(2ω0t)

2

⇓
1

2
sin(ωxt)︸ ︷︷ ︸

Low frequency

+
sin(t(2ω0t+ ωx))− sin(t(2ω0 − ωx))

4︸ ︷︷ ︸
Unwanted high frequency, to be filtered out
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16.1.3 Amplitude modulation and demodulation
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17 Measuring displacement (capacitive sensors)

17.1 Principle

• Capacitance definition:

C =
Q

V

• In the ideal case, we have infinite parallel plates.

• Used for proximity sensing.

Gauss’ Law:

Q =

∫∫
∑ ϵ0ϵrE dS

C =
Q

V
=

ϵ0ϵrES

Ed
=

ϵ0ϵrS

d
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17.1.1 Types of plate movement

17.2 Guard electrode

The guard electrode limits field-fringing effects.
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17.3 Interfacing with capacitive sensors using AC

• AC bridge:

• AC driver circuit:

• Envelope demodulator, which is the simplest kind of demodulation for
non-negative signals.
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18 Proximity sensors

18.1 Hall effect

The Lorentz force is defined as:

F⃗ = qv⃗ × B⃗
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18.2 Hall effect sensors

18.2.1 Proximity sensor

Hall effect proximity sensors have a contactless switch.

18.2.2 Current sensor

183



18.3 Light detectors

18.3.1 Photo-resistors
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18.3.2 Photo-diodes

• Load resistance

• Operational amplifier circuit
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18.3.3 Photo-transistors

• Transmissive type:

– Photo-interrupter

• Reflective type:

– Resistive load

– Current-voltage operational amplifier
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19 Digital encoders

• Digital encoders convert either linear or rotary motion into a sequence
of digital pulses.

• They are made using optical transmitter and receiver pairs, with a
glass or plastic material photographically patterned.

• Alternatively, they can also make use of hall effect sensors that are
coupled with magnetic rings and bars.

187



19.1 Absolute encoders

• There are n TX and RX pairs for coding 2n sectors.

• Angular n-bits encoders have a resolution of 360◦

2n .

• They are more expensive, as they require n TX and RX pairs.

• Spurious states may arise from contemporary transitions.

• Gray code can be used instead of natural binary code to ensure that
there are no contemporary transitions.
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19.2 Incremental encoders

• Incremental encoders have a simpler design.

– A single pair of TX and RX is insufficient to encode the direction.

– Hence, 2 TX and RX pairs plus a "reset" position are required.

• The signals are quadrature, which means the signals are 1
4 cycle out-

of-phase.
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20 DC Motors

20.1 Structure and fields

• Stator is the external magnet, which is fixed.

• Rotor is the internal magnet, which rotates.

• The stator field and the rotor fields are always orthogonal to produce
the maximum torque.
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20.2 Commutation

When torque T = 0, the motor is in equilibrium.

20.2.1 With commutation
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20.2.2 Without commutation
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20.3 Generated torque

The larger the number of poles, the more constant the torque, which means
the torque produced by the motor is more independent of the rotor position.

193



20.4 3-pole DC motor
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20.5 Equations

• Armature equation

V = Ri + L
di

dt
+ e

• Mechanical equation
Jω̇ + bω = Te − TL

• Electro-mechanical coupling

Te = Kti

e = Keω

Teω = ei ⇔ Ke = kt ≜ Ka

Where:

• V is the voltage

• R is the resistance

• L is the inductance of the circuit

• e is the electromotive force

• J is the radius of the motor

• ω is the angular velocity

• Te is the load torque

• TL is the electromagnetic torque

• Ka is the armature constant
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20.6 DC motor equivalent electrical circuit

• Let:

– Voltage be an analogue of torque.

– Current be an analogue of speed.

• Then:

– Inductance is an analogue of inertia.

– Resistance is an analogue of damping.

– Capacitance is an analogue of compliance.

– Electrical power V I is an analogue of mechanical power Tω.

• Note that a mechanical parallel is an analogue of the electrical
series.

Figure 4: DC motor equivalent electromechanical model.
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20.7 Steady state speed torque curve

V = Ri+
�
��L
di

dt
+Kaω

�
��J
dω

dt
+ bω + TL = Kai

V −Kaω = Ri

i =
1

Ka
bω + TL

KaV −K2
aω = Rbω +RTL

ω =
KaV

RTL
Rb+K2

a
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20.7.1 Load lines

Loads can be of various kinds, such as:

• Friction: TL = bLω

• Constant torque: TL = const

• Inertial: TL = I = dω
dt = 0 @ Steady state

• Nonlinear: TL = f(ω)

OP is the operating point in the diagram below.
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20.8 Common types of load

1. Constant torque:
T
(1)
L = mgr

2. Constant torque with friction:

T
(2)
L = mgr cos θ + bLv

T
(2)
L = mgr cos θ + bLωr
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Graph of the common types of loads:
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20.9 Maximum output power

At nominal voltage V :
Pout = ωTL

The power output is the area in the speed-torque graph. Using a friction
load:

TL = bLωL

OP is the operating point in the diagram below.

Hence, the maximum output power is:

Pmax
out =

1

4
ω0Ts
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20.10 Maximum efficiency

At nominal voltage V :

η =
power in
power out

=
ωTL

V I
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20.11 DC motor load matching

1. Figure out the mechanical load of the motor. For a friction load:

TL = bLωl

2. Figure out the gear ratio N :

TL = NTm

ωm = NωL

3. Use the torque and angular speed to turn it into voltage (V ) and
current (I).

You can either design for maximum power or maximum efficiency.
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20.11.1 Types of gears

• (a) Spur gears mesh pairs of gears with different numbers of teeth to
achieve speed reduction.

• (b) Planetary gears have several gears meshed in an outer ring for a
large speed reduction.

• (c) Worm gears produce rotary motion at right angles to the shaft.

• (d) A lead screw and nut can create linear motion, as can (e) a rack-
and-pinion system, and (f) belt-and-pulley-drives.

20.12 Driving DC motors

• Using power amplifiers to drive DC motors is possible but is typically
avoided.

• This is due to large power dissipation and over-heating of the
amplifier.

• It is preferable to continuously switch the motor on and off using pulse
width modulation (PWM).
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20.13 Pulse width modulation operating principle

The DC motor is in fact a 2nd order low pass filter.

ω =
KaV − (R+ Ls)TL

(Ls +R)(Js+ b) +K2
a

Frequency analysis:
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20.14 Inductive kickback

• There is voltage across the inductor:

V = L
di

dt

• If the current starts decreasing, the voltage v = vB − vA quickly de-
creases.

• Hence, voltage vA quickly increases.

• (a) The steady-state current through an inductor Ion, cannot immedi-
ately go to 0 at A when the switch is opened. The changing current
induces a voltage across the inductor, making the potential at A greater
than at B, causing the switch or relay to arc over.

• (b) Flyback diodes protect switches from blowing up.

• (c) Transistor switches must be protected in the same manner.
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20.15 Pulse width modulation circuit

For the diagrams above, the diagram on the left is a circuit for bidirectional
current flow through a DC motor, and the diagram on the right is a typi-
cal H-bridge circuit, including kickback diodes to protect against inductive
kickback.
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20.16 Brushless DC motors

• A brushless DC motor is similar to a brushed DC motor, but has its
insides out.

• The stator field is rotating instead of remaining static.

• The rotor field is given by a permanent magnet and stays in place.

20.16.1 Driving strategy

To maximise the output torque, try to keep the rotor and the stator field
orthogonal as much as possible.
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20.16.2 Trapezoidal brushless DC motors

• Tj is the torque due to the j-th coils.

• These motors always drive two coils at a time with opposite currents
+I and −I.

• The total torque Ti − Tj always has a constant zone.

– Use torque T1 − T2 when θ = π
3 ± π

6 .

– You will need to know the angular position of the rotor.
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20.16.3 Getting a desired torque

• Detect the rotor position via encoders, typically Hall effect sensors.

• Select the appropriate switches to determine the desired Ti−Tj torque.
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21 Strain gauges

21.1 Stress or strain measurements

• Strain measurements are important to determine safe loading condi-
tions of mechanical structures.

• The stress or force measurements are typically derived indirectly from
strain and displacement measurements.

• Electrical resistance strain gauges have the following characteristics:

– Thin metal foil, typically constantan.

– The thin metal foil is patterned onto plastic backing material.

– This backing is then bonded onto mechanical structures, and the
stress is inferred from solid mechanics principles.
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21.2 Strain

• Strain quantifies the amount of deformation of a body, and it is given
by:

S =
dL

L

• It is non-dimensional, as it is defined as a relative change (dLL ).

• Typical material undergo "micro strains" from 10−6 (ppm) up to a few
%.

• Strain can either be positive (tensile strain) or negative (compressive
strain).

21.2.1 Poisson’s ratio (ν)

Poisson’s ratio is typically from 0.3 (steel) to 0.5 (rubber). It is defined as
follows:

ν =
lateral strain
axial strain
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21.2.2 Resistance of a rectangular conductor

r = ρ
L

A
, A = ωh

dR

R
=

dρ

ρ
+

dL

L
− dA

A

dR

R
=

dρ

ρ
+

dL

L
−
(
dw

w
+

dh

h

)
• Axial strain:

S =
dL

L

• Lateral strain:
dw

w
=

dh

h
= −ν

dL

L
= −νS

dR

R
=

dρ

ρ
+

dL

L
−
(
dw

w
+

dh

h

)
=

dρ

ρ
+ (1 + 2ν)S

=

 dρ

ρ

1

S︸ ︷︷ ︸
piezoresistivity

+1 + 2ν

S

= GS
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21.2.3 Gauge factor (G):

G =
dR

R

1

S
=

1

R

∂R

∂S
=

dρ

ρ

1

S
+ 1 + 2ν

dR = dRS =
∂R

∂S
S

Note that we are only considering changes of resistance due to strain dR =
dRS .

Gauge factor of various materials:

Material Gauge factor
Nickel -12.6
Manganese +0.07
Nichrome +2.0
Constantan +2.1
Soft Iron +4.2
Carbon +20
Platinum +4.8
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21.3 Transverse sensitivity

dR = R0GS

• The larger R0 is, the larger dR is.

• Long and thin wires allow for larger R0, given that the wires are aligned
with axial strain (Sa).

• Practically, long wires are assembled in the form of a serpentine.

• The end-loops of these wires are aligned with the transverse axis, and
are made thicker to reduce sensitivity to transverse strain (St).
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21.4 Materials

• The best materials to use constantan and ferry alloys.

• Typical strain ranges are:

S = 1− 104µS

Which is from 1 ppm to 1%.

• G is roughly 2.

– dR
R is in the same order of magnitude as S.

– However, there is a challenge in detecting small resistance changes.
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21.4.1 Numerical example

dR = R = GS

• G is roughly 2

• R0 is roughly 100− 1, 000 Ω

• Strain is in the order of 10− 104 µS (micro strain)

• Strain is non-dimensional, and 1 µS = 10−6 (e.g. 1 µmm−1)

dR = (100Ω)× 2× (100 µS = 0.02Ω)

• Transverse sensitivity is in the order of 1%.

• How do we sense such small changes?
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21.5 Wheatstone bridge

• Bridge equations:
V +

Vi
=

R2

R1 +R2

V −

Vi
=

R4

R3 +R4

Vo

Vi
=

R2

R1 +R2
− R4

R3 +R4

• Bridge balance condition:

Vo = 0 ⇔ R1R4 = R2R3

21.5.1 1st order approximation

• When R1 = R2 and R3 = R4, it implies balance.

• The first order approximation is acceptable up to a few percent S. Note
that 1% S = 104µS.

dVo

Vi
=

1

4

(
dR2

R2
− dR1

R1
+

dR3

R3
− dR4

R4

)
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21.5.2 Quarter bridge

Consider:
R1 = R3 = R4 = R0

RG = R0 + dR

The bridge output is:
dVo

Vi
=

R0 + dR

2R0 + dR
− 1

2

The Taylor expansion:

dVo

Vi
=

1

4

dR

R0
− 1

4

dR2

R2
0

+ · · ·

Hence:
dVo

Vi
≃ 1

4

dR

4R0
=

1

4
GS
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21.5.3 Quarter bridge connection types

• 2-wire connection

– Rw is the long wires’ resistance, which has the following charac-
teristics:

∗ It is as high as a few ohms.
∗ The resistance is temperature dependent.
∗ There is unbalancing effects.

• 3-wire connection

– No current in the 3rd wire.

– The bridge is balanced.

– There is an attenuated gauge factor.

Vo

Vi
=

1

4

dR

R0 +Rw
=

1

4

R0

R0 +Rw

dR

R0
=

1

4
G∗S

G∗ = G R0

R0 +Rw
≤ G
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21.6 Temperature compensation

21.6.1 Dummy gauges

• Dummy gauges are mounted in close thermal contact but not bonded.

• Strain gauge: R1 = R0 + dR1

• Dummy gauge: R2 = R0 + dR2

dR1 =
∂R1

∂S
S +

∂R1

∂T
dT

dR2 =
∂R2

∂T
dT

Because the strain gauge are dummy gauge are technologically similar gauges
in thermal contact:

∂R1

∂T
dT =

∂R2

∂T
dT

Hence:

dVo

Vi
=

1

4

(
dR1

R0
− dR2

R0

)
=

1

4R0

(
∂R1

∂S
S +

∂R1

∂T
dT − ∂R2

∂T
dT

)
dVo

Vi
=

1

4R0

(
∂R1

∂S
S

)
=

1

4
GS
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21.6.2 Poisson gauges

• Poisson gauges are mounted in close thermal contact and bonded.

• Strain gauge: R1 = R0 + dR1

• Poisson gauge: R2 = R0 + dR2

dR1 =
∂R1

∂S
S +

∂R1

∂T
dT

dR2 = −ν
∂R2

∂S
dS +

∂R2

∂T
dT

Because the strain gauge are Poisson gauge are technologically similar gauges
bonded together in thermal contact:

∂R1

∂T
dT =

∂R2

∂T
dT

∂R1

∂S
=

∂R2

∂S

Hence:

dVo

Vi
=

1

4

(
dR1

R0
− dR2

R0

)
=

1

4R0

(
∂R1

∂S
S +

∂R1

∂T
dT + ν

∂R2

∂S
S − ∂R2

∂T
dT

)
dVo

Vi
=

1

4R0

(
∂R1

∂S
(1 + ν)S

)
=

1

4
G(1 + ν)S

21.7 Half bridge

Half bridges have two active strain gauges which enhances the sensitivity of
the bridge.

dVo

Vi
=

1

4

(
dR2

R2
− dR1

R1
+

dR3

R3
− dR4

R4

)

222



21.7.1 Bending

dVo

Vi
=

1

4

(
dR3

R3
− dR4

R4

)
=

1

2
GSb

21.7.2 Axial loading

dVo

Vi
=

1

4

(
dR2

R2
+

dR3

R3

)
=

1

2
GSa
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21.8 Apparent strain

• Apparent strain is manifested as any change in gauge resistance which
is not due to the strain being measured.

• For example, combinations of different mechanical loading, like:

S1 = Sa + Sb

S2 = Sa − Sb

21.8.1 Thermal effects

• Resistance changes might be due to a combination of strain and tem-
perature.

dR =
∂R

∂S
S +

∂R

∂T
dT =

∂R

∂S

S +

(
∂R

∂S

)−1 ∂R

∂T
dT︸ ︷︷ ︸

apparent strain ST


• Apparent strain due to temperature. dRT is the resistance change

solely due to temperature in the equation below:

ST =

(
∂R

∂S

)−1 ∂R

∂T
dT =

1

G
1

R

∂R

∂T
dT =

1

G
dRT

R
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21.8.2 Half bridge example

Ultimately, sensitivity to loading condition and temperature is determined
by the electrical configuration.

1. Configuration 1:

dVo

Vi
=

1

4
G(SG1 + SG2) =

1

2
G(Sa + ST )

• The configuration is sensitive to axial strain.

• It can compensate for bending but not temperature.

2. Configuration 2:

dVo

Vi
=

1

4
G(−SG1 + SG2) =

1

2
GSb

• The configuration is sensitive to bending strain.

• It can compensate for axial strain and temperature.
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21.8.3 Full bridge example

1. Configuration 1:

SG1 = Sa + Sb + ST

SG2 = Sa − Sb + ST

Sd1 = Sd2 = ST

dVo

Vi
=

1

4
G(SG1 − Sd1 + SG2 − Sd2) =

1

2
GSa

• The configuration above can sense axial strain.
• It also can compensate for temperature and bending.

2. Configuration 2:

dVo

Vi
=

1

4
G(SG1 − SG2 + SG3 − SG4) = GSb

• The configuration above can sense bending strain, with maximum
bridge sensitivity.

• It also can compensate for temperature and axial strain.
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21.8.4 Cantilever beams example

Cantilever beams have longitudinal strain due to:

• Axial loading (Fa):

Sa =
Fa

EA

Where:

– L: Length

– t: Thickness

– A: Cross-sectional area

– E: Young’s modulus

• Bending (M,Ft):

Sb = −M + Ft(L− x)

EI

t

2
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21.8.5 Area moment of inertia (I)

I =
ab3

12

I =
πr4

4

I =
π(r4max − r4min)

4

21.9 Measuring forces

• You are given 2 identical strain-gauges, where:
dR

R
= GS, where G = 2

• Where and how would you place them, along the beam, to measure the
weight of a mass m and maximise sensitivity as well as compensate for
temperature changes?
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21.10 Bridge balancing

In reality, the bridge is never balanced when stress is applied, hence there is
a need to re-establish balance by modifying arm resistors:

R1R3 = R2R4

The above two circuits require:

• Very low resistance resistors, which is not practical.

• In-series switches or contacts, which results in unreliable extra resis-
tance being added.

The above two circuits are the most suitable, as:

• Much larger resistors can be used.

• The structure of the bridge is not modified, which allows for parallel
insertion.

• (d) is more general as it balances both sides.
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