

LINEAR SYSTEMS

Linear systems are of the form

$$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$$

where X_{in} and X_{out} are input and output variables, A_n and B_m are coefficients, N is the order of the system.

ontent Convright Nanyang Technological University

Which of the following is correct for the Characteristic Equations of the Linear System?

1)
$$\sum_{n=1}^{N} A_{n} s^{n} = 0$$

2) $\sum_{n=1}^{N} A_{n} s^{n} = 1$

2)
$$\sum_{n=1}^{N} A_n s^n = 1$$

3)
$$\sum_{n=0}^{N} A_{n} s^{n} = 0$$

4)
$$\sum_{n=0}^{N} A_{n} s^{n} = 1$$

3

ANSWER TO Q1

Which of the following is correct for the Characteristic Equations of the Linear System?

1)
$$\sum_{n=1}^{N} A_{n} s^{n} = 0$$

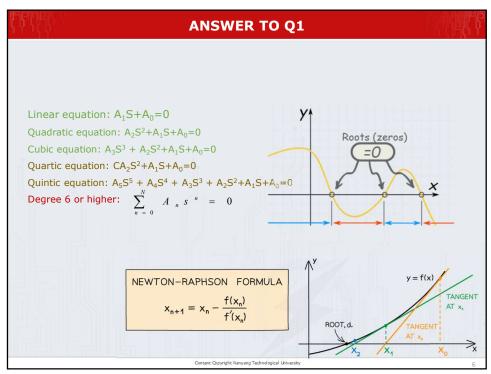
1)
$$\sum_{n=1}^{N} A_{n} s^{n} = 0$$
2)
$$\sum_{n=1}^{N} A_{n} s^{n} = 1$$

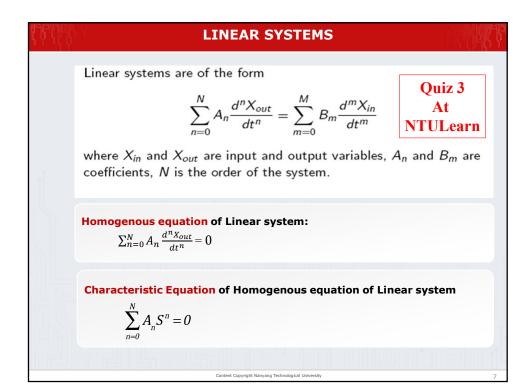
3)
$$\sum_{n=0}^{N} A_{n} s^{n} = 0$$

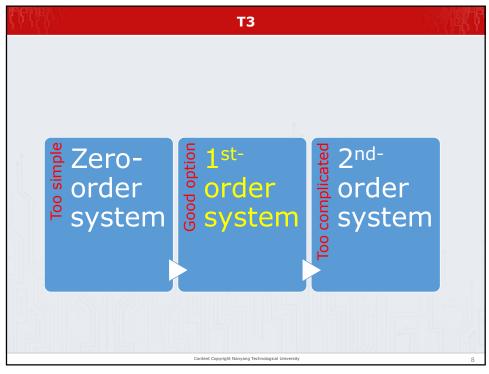
4)
$$\sum_{n=0}^{N} A_{-n} s^{-n} = 1$$

Quiz 3 At **NTULearn**

ANSWER TO Q1


Which of the following is correct for the Characteristic Equations of the Linear System?


1)
$$\sum_{n=1}^{N} A_n s^n = 0$$


1)
$$\sum_{n=1}^{N} A_{n} s^{n} = 0$$

2) $\sum_{n=1}^{N} A_{n} s^{n} = 1$

$$3) \sqrt{\sum_{n=0}^{N} A_{n} s^{n}} = 0$$

4)
$$\sum_{n=0}^{N} A_{n} s^{n} = 1$$

LINEAR SYSTEM

1st Order System

$$\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$$

The **Characteristic Equation** of The Homogenous Equation of the 1st Order System

$$\tau s + 1 = 0$$

Content Copyright Nanyang Technological University

9

LINEAR SYSTEM

$$\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$$

Step input

Since the root of this equation is $s=-1/\tau$, the **homogeneous solution** is

$$X_{out_h} = Ce^{-t/\tau}$$

Where C is a constant which can determined later applying initial conditions

$$\tau \frac{dCe^{-t/\tau}}{dt} + Ce^{-t/\tau} = \tau * (-\frac{c}{\tau})e^{-t/\tau} + Ce^{-t/\tau} = 0$$

Content Convright Nanyang Technological University

LINEAR SYSTEM

Step input

$$\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$$

A particular solution

$$X_{out_p} = KA_{in}$$

$$X_{in} = A_{in}$$

$$\tau \frac{dX_{out_p}}{dt} + X_{out_p} = -\tau * 0 + KA_{in} = KA_{in}$$

Content Copyright Nanyang Technological Universit

11

LINEAR SYSTEM

$$\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$$

Step input

The general solution is the sum of the homogeneous and particular solutions

$$X_{out} = X_{outh} + X_{outp} = Ce^{-t/\tau} + KA_{in}$$

ontent Convright Nanyang Technological University

3. During a step function calibration, a <u>first-order instrument</u> is exposed to a step change of 100 units. If after 1.2 s the instrument indicates 80 units, estimate the instrument time constant. Estimate the error in the indicated value after 1.5 s. Assume $X_{out}(0) = 0$ units and K = 1 unit/unit.

 $\tau = 0.75 \text{ s}$; error at 1.5 s = 13.4 units

Content Copyright Nanyang Technological Universit

13

13

LINEAR SYSTEM

Determining constant C by applying initial conditions

$$X_{out}(0) = 0$$

$$X_{out}(0) = Ce^{-0/\tau} + KA_{in} = 0$$

$$C = -KA_{in}$$

$$X_{out}(t) = Ce^{-t/\tau} + KA_{in} = KA_{in}(1 - e^{-t/\tau})$$

ntent Copyright Nanyang Technological University

During a step function calibration, a first-order instrument is exposed to a step change of 100 units. If after 1.2 s the instrument indicates 80 units, estimate the instrument time constant. Estimate the error in the indicated value after 1.5 s. Assume $X_{out}(0) = 0$ units and K = 1 unit/unit.

 $\tau = 0.75 \text{ s}$; error at 1.5 s = 13.4 units

$$K = 1$$

$$\lim_{t \to \infty} X_{out}(t) = 100 = 1 * A_{in} \left(1 - \lim_{t \to \infty} e^{-t/\tau} \right)$$
$$A_{in} = 100$$

Content Copyright Nanyang Technological Universit

15

15

ANSWER TO Q2

During a step function calibration, a first-order instrument is exposed to a step change of 100 units. If after 1.2 s the instrument indicates 80 units, estimate the instrument time constant. Estimate the error in the indicated value after 1.5 s. Assume $X_{out}(0) = 0$ units and K = 1 unit/unit.

 $\tau = 0.75 \text{ s}$; error at 1.5 s = 13.4 units

$$X_{out}(t) = 100(1 - e^{-t/\tau})$$

$$X_{out}(1.2) = 80 = 100(1 - e^{-1.2/\tau})$$

Thus

$$e^{-1.2/\tau} = 20/100$$

$$-1.2/\tau = \ln(0.2) = -1.61$$

 $\tau \approx 0.75$

$$X_{out}(t) = 100(1 - e^{-t/0.75})$$

Content Convright Nanyang Technological Universit

ANSWER TO Q2

3. During a step function calibration, a first-order instrument is exposed to a step change of 100 units. If after 1.2 s the instrument indicates 80 units, estimate the instrument time constant. Estimate the error in the indicated value after 1.5 s. Assume $X_{out}(0) = 0$ units and K = 1 unit/unit.

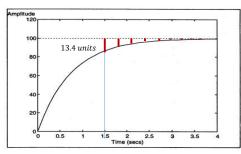
 $\tau = 0.75 \text{ s}$; error at 1.5 s = 13.4 units

$$X_{out}(t) = 100(1 - e^{-t/0.75})$$

$$X_{out}(1.5) = 100(1 - e^{-1.5/0.75})$$

Thus

error at 1.5 s = 100- $X_{out}(1.5) = 100e^{-1.5/0.75} = 13.4 \text{ units}$


Content Convright Nanyang Technological University

17

17

ANSWER TO Q2

error at t = 100- $X_{out}(t)$ = 100e^{-t/0.75}

Step response of system

Note that two parameters, i.e. τ and K, are needed to characterise the first order system. τ and K are system variables, and are **not** dependent on the input.

ntent Convright Nanyang Technological University

A first-order instrument with a time constant of 2 s is to be used to measure a periodic input. If a dynamic error of 2% can be tolerated, determine the maximum frequency of a periodic input that can be measured.

 $(\omega_{\text{max}} = 0.1 \text{ rad s}^{-1})$

 $\tau = 2$

ontent Convright Nanyang Technological University

19

ANSWER TO Q3

1. Magnitude Ratio can be considered as Attenuation (always positive and less than 1)

$$M(\omega) = 1/\sqrt{1 + (\omega \tau)^2}$$

2. Dynamic error (1st order system) always positive and less than 1 as well

$$\delta(\omega) = 1 - M(\omega)$$

ontent Convright Nanyang Technological University

ANSWER TO Q3

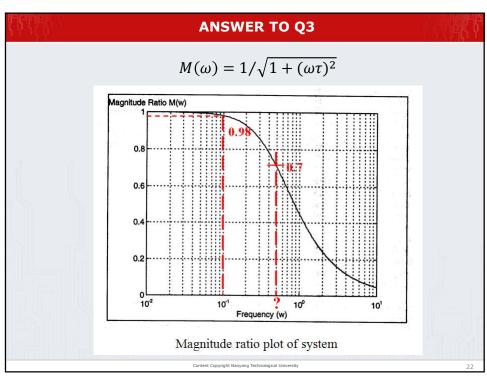
A first-order instrument with a time constant of 2 s is to be used to measure a periodic input. If a <u>dynamic error of 2%</u> can be tolerated, determine the <u>maximum frequency</u> of a periodic input that can be measured.

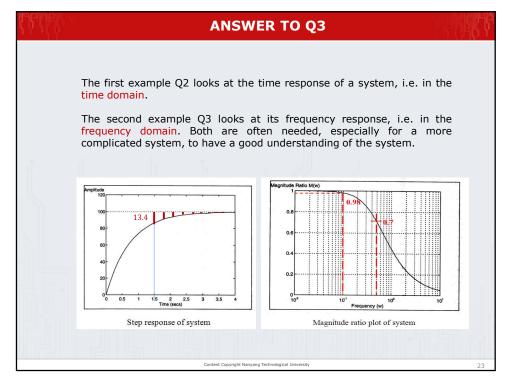
 $(\omega_{max} = 0.1 \text{ rad s}^{-1})$

Solution

$$\delta(\omega) = 1 - M(\omega) \leq 0.02$$

$$0.98 \le M(\omega) \le 1$$


$$0.98 \leq 1/\sqrt{1+(\omega\tau)^2} \leq 1$$

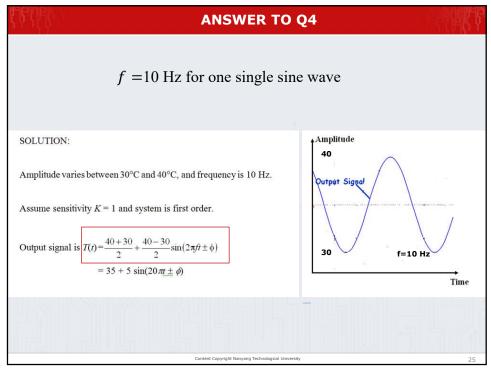

$$0 \le \omega \le \sqrt{(1/0.98)^2 - 1}/\tau$$

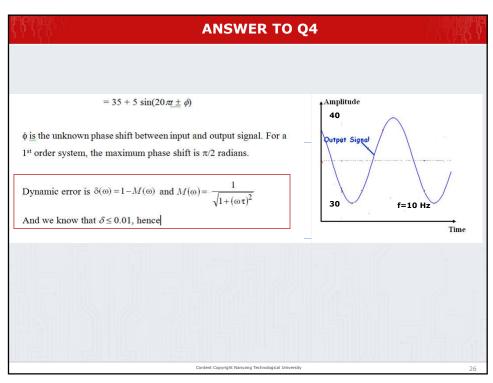
$$\tau$$
=2, ω_{max} =0.1 rad s⁻¹ or f_{max} =0.016 Hz

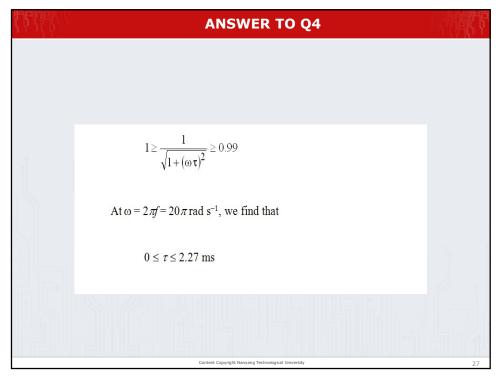
Content Copyright Nanyang Technological University

2

Q4


The output from a temperature system indicates a steady, time-varying signal having amplitude which varies between 30 and 40 °C, with a single frequency of 10 Hz. Express the output signal as a waveform equation, T(t). If the dynamic error is to be less than 1%, what must the system time constant be? Assume that the sensitivity K = 1 and system is of first order.


$$(T(t) = 35 + 5\sin(20\pi t \pm \phi); \tau \le 2.27 \text{ ms})$$


$$f = 10 \text{ Hz}$$

1st order system

ntent Copyright Nanyang Technological University

