$\omega = \frac{K_aV - (R + Ls)T_m}{(Ls + R)(Js + h) + K^2}$

→ ±0.3% over the range 0-200 [C]

 $\frac{dR}{R}\frac{1}{S} = \frac{1}{R}\frac{\partial R}{\partial S} = \frac{d\rho}{\rho}\frac{1}{S} + 1 + 2\frac{d\rho}{\rho}$

 $E = \frac{\sigma}{r}$, $\sigma = \frac{Force}{torce}$ $\sigma = Stress,$ S = Strain $Strain, S = \frac{F_o}{AE}$ $F_o = Force$ A = Area, E = Young's Modulus ve > extension Integration by Parts $\int u dv = uv - \int v du$ R_{G1} Choose u in this order: LIATE Inverse Algebraic Tria Exponential R_{G2} ${}^{\mathbf{I}}\mathsf{R}_{\mathsf{G1}}$

 $Strain, S = \frac{\Delta L}{L}$

 $\Delta L = extension$