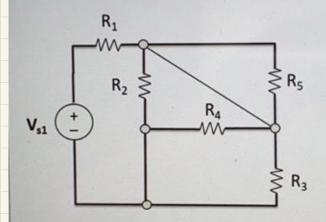

What's the voltage across R₃, i.e., V_{R3}, in the following circuit? (Hint: label different node with different color) Given $V_{R1} = 8V$, $V_{R5} = 1 V$, $V_{S1} = 10 V$, and $V_{S2} = 1 V$ Which among the following values most closely matches the correct answer? O a. 1V O b. 3V O c. 4V O d. 2V own notes: -Vs1(question) + Vr1(question) + Vr3 = 0

Given $R_1 = R_2 = R_3 = 8 \Omega$ Which among the following values most closely matches the correct answer?

- O a. 65V
- O b. 75V
- O c. 60V
- O d. 70V

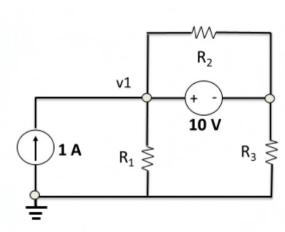

own notes: 10A(given) x R(question) - 10V(given) =

ib(R2) - (ia-ib)(R1) = 0
[this if the formula I used, but I got it wrong not sure is it my careless mistake or the formula wrong]

find ib, with ia given in the diagram, and R1 and R2 in the question

What's the equivalent resistance seen by V_{S1} in the following circuit? (Hint: label different node with different color)

Given R₁ = 1 Ω , R₂ = 1 Ω , R₃ = 1 Ω , R₄ = 1 Ω , R₅ = 2 Ω Which among the following values most closely matches the correct answer?


- O a. 1.3 Ω
- O b. 2.6 Ω
- O c, 3.6 Ω
- O d. 1.6 Ω

Question 1

In the circuit below, what is the node voltage v1?

Given $R_1 = R_2 = R_3 = 110 \Omega$

Selected Answer: 🚫 60.0 V

65.0 V Answers:

30.0 V

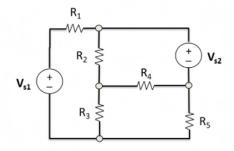
35.0 V

$$R_{2}i_{1} + 10 = 0 \implies i_{1} = \frac{1}{11}$$

$$-10 + R_{3}i_{2} + R_{1}(i_{2} - 1) = 0$$

$$-10 + i_{2}(R_{3} + R_{1}) - R_{1} = 0 \implies i_{2} = \frac{6}{11}$$

$$since node on R_{3} = node on R_{1},$$


$$i_{2}R_{3} = V_{1}$$

$$V_{1} = \frac{6}{11}(110)$$

What's the equivalent resistance seen by R_4 in the following circuit? (Hint: short circuit V_{51} and V_{52})

Given $R_1 = R_2 = R_3 = R_4 = R_5 = 13 \Omega$

Selected Answer: 🤡 7.8 Ω

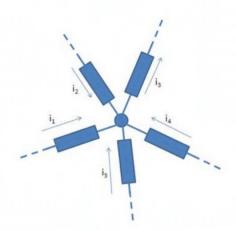
Answers:

6.8 Ω

🤣 7.8 Ω

9.8 Ω

8.8 Ω


= 7.8_2

R4=[(R1 || R6) + R2] || R3

Question 3 Referring to the following circuit and knowing that Vs = 10 [V] R1 = 10.1 [Ohms] R2 = 9.5 [Ohms]R3 = 2.3 [Ohms] R4 = 3.3 [Ohms] R5 = 5.5 [Ohms] determine the value of Rload which ensures maximum power transfer. Allowing for some numerical approximation, which among the following values most closely matches the correct answer? Selected Answer: Rload = 7.7624 [Ohms] Answers: Rload = 15.5248 [Ohms] Rload = -2.2376 [Ohms] Rload = 7.7624 [Ohms] Rload = 30.7 [Ohms] R1 = [(R11 R2) + R3] 1 R4 + R5 = 7.7624_1

Question 4

and knowing that

11 = 9.1 [A]

12 = -2.4 [A] 13 = -1.9 [A]

14 = -11.9 [A]

. .

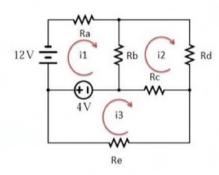
determine the value of I5.

Allowing for some numerical approximation, which among the following values most closely matches the correct answer?

Selected Answer: 🤡 I5 = 3.3 A

Answers: 15 = -3.3 A

15 = -1.3 A


15 = 0.3 A

I5 = 3.3 A

Question 5

The mesh-current method, applied to the following circuit

will lead to a 3x3 system of equations such as

$$\begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} -8V \\ 0V \\ -4V \end{bmatrix}$$

Allowing for some numerical approximation and knowing

Ra = 3.1 [Ohms] Rb = 4.5 [Ohms]

Rc = 20.2 [Ohms]Rd = 20.3 [Ohms]

Re = 15.5 [Ohms]

which among the following matrices best represents the resistance matrix [Rij] in the equation above?

Selected Answer:
$$\begin{bmatrix} 7.6 & -4.5 & 0 \end{bmatrix}$$
 $\begin{bmatrix} 12 \text{ V} + \hat{1}_1 \text{ R} \alpha + (\hat{1}_1 - \hat{1}_2) & R_b - 4 \text{ V} = 0 \end{bmatrix}$
 $\begin{bmatrix} -4.5 & 45 & -20.2 \end{bmatrix}$ $\begin{bmatrix} 12 \text{ V} + \hat{1}_1 \text{ R} \alpha + (\hat{1}_1 - \hat{1}_2) & R_b - 4 \text{ V} = 0 \end{bmatrix}$
 $\begin{bmatrix} 12 \text{ V} + \hat{1}_1 \text{ R} \alpha + (\hat{1}_1 - \hat{1}_2) & R_b - 4 \text{ V} = 0 \end{bmatrix}$

18.61

Answers:

[7.6 0 0]
$$(i_3-i_1)R_0+i_2R_4+(i_3-i_3)R_0=0$$
[7.6 4.5 -20.2] $(i_3-i_1)R_0+i_3R_0+i_3R_0=0$
[7.6 4.5 -20.2] $(i_3-i_1)R_0+i_3R_0+i_3R_0=0$
[7.6 4.5 40.6] $(i_3-i_3)R_0+i_3R_0=0$
[7.7 4 $(i_3-i_3)R_0+i_3R_0=0$
[7.8 4 $(i_3-i_3)R_0+i_3R_0=0$
[7.9 4 $(i_3-i_3)R_0+i_3R_0=0$

15.5

120.2