NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

E3.5/E3.1AE HEAT EXCHANGER

HEAT TRANSFER LAB

VENUE: N3-B2A-01

NAME OF STUDENT: <u>Eugene Low</u> LAB		AB SUB-GROUF	P:TM01
MATRIC NO:	U1922005K	DATE:	25/03/21
NAME OF SUPERVISOR:	Asst Prof Hou Han W	ei	
GRADE:			

NOTE: THIS TITLE PAGE SHOULD BE ATTACHED TO ALL REQUIRED MATERIAL FOR THIS EXPERIMENT BEFORE SUBMISSION.

Table 1 Parallel flow and Counter flow

Test	Parallel flow	Counter flow	
Metal wall at inlet, T_1 (°C)	55.8	62.7	
Metal wall at exit, T_2 (°C)	55.8	47	
Hot stream at inlet, T_3 (°C)	66	66.2	
Hot stream 1 st intermediate, T_4 (°C)	62.1	63.7	
Hot stream 2 nd intermediate, T_5 (°C)	59.6	61.1	
Hot stream at exit, T_6 (°C)	58	57.3	
Cold stream entry/exit, T_7 (°C)	31.3	51.2	
Cold stream intermediate, T_8 (°C)	40.8	45.3	
Cold stream intermediate, <i>T</i> ₉ (°C)	46.4	39.1	
Cold stream entry/exit, T_{10} (°C)	50	31.2	
Hot water flow rate, $m_h(kg/s)$	0.05	0.05	
Cooling water flow rate, m^{\cdot}_{c} (kg/s)	0.02	0.02	
Heat transfer rate from hot water, $Q_h(W)$	1672	1860.1	
Heat transfer rate to cold water, $Q_c(W)$	1563.32	1672	

Table 2 Effect of fluid velocity on the convective heat transfer coefficients (Counter flow)

Test	1	2	3	4	5
	(100%)	(80%)	(60%)	(40%)	(20%)
Metal wall at inlet, T_1 (°C)		65.4	65.6	66.1	67
Metal wall at exit, T_2 (°C)		55.5	54.5	52.7	48.3
Hot stream at inlet, T_3 (°C)		66.6	67.3	68.4	71.4
Hot stream 1 st intermediate, T_4 (°C)		66	66.4	67.1	68.5
Hot stream 2 nd intermediate, T ₅ (°C)		65	65.2	65.3	64.8
Hot stream at exit, T_6 (°C)	64	63.4	63.1	62.5	60.1
Cold stream entry/exit, T ₇ (°C)		57.9	57.6	57	54.7
Cold stream intermediate, T ₈ (°C)		52	51.5	50.6	47.8
Cold stream intermediate, T ₉ (°C)	42	41.5	41.1	40.4	38.5
Cold stream entry/exit, T_{10} (°C)		29	29	29	29
Hot water flow rate, $m'_h(kg/s)$	0.167	0.1333	0.1	0.0667	0.0333
Cooling water flow rate, m_c (kg/s)		0.016	0.016	0.016	0.016
Overall heat transfer coefficient, U (W/m ² K)		3311.7	3140.8	2785.9	2358.3
Average convective heat transfer coefficient inside the	22539	19215	15804	12180	8033.8
inner tube, h_h (W/m ² K)					
Average convective heat transfer coefficient in the annulus between the tubes, h_c (W/m ² K)	4192.2	4142.1	4087.3	3960.4	3568.4
aminutus octwoon the tubes, ne (William)					

NANYANG TECHNOLOGICAL UNIVERSITY

School of Mechanical and Aerospace Engineering

EXPERIMENT: E3.5/E3.1AE - HEAT EXCHANGER

LOG SHEET

Lab Sub-Group: ____TM01___; Degree Programme: ____MAE____

Date: <u>25/03/21</u> Time: am / pm *

Submitted to: Prof/Mr/Ms * _____Hou Han Wei_____

6.1 Parallel and counter flow

Eugene Low

Name:

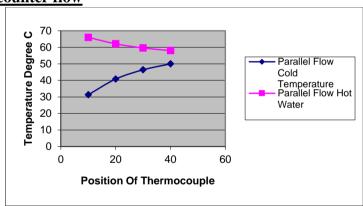


Fig 1: Temperature of metal wall for parallel flow

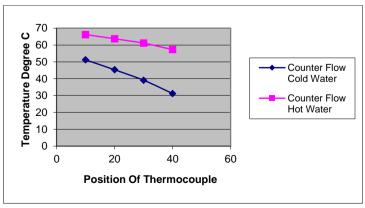


Fig 2: Temperature of metal wall for counter flow

From fig 1 and fig 2, we can determine that the rate of heat transfer for the counter flow is more efficient than parallel flow. For counter flow, Q_h and Q_c are higher, and the temperature difference are more uniform compared to parallel flow. This also minimises thermal stresses in the pipe.

The discrepancies of the rate of heat transferred could be due to:

- 1. Heat lost to surroundings by radiation due to poor insulation of the experimental set-up.
- 2. Experimental issue such as insufficient time for the time reading to stabilise. The fluctuation of readings may require the result to be approximated, hence causing it to be inaccurate.
- 3. Filing effect as the experimental set-up was used for long period of time. This filing effect will act as thermal resistor, therefore causing result to be inaccurate.

6.2 <u>Effect of fluid velocity on the convective heat transfer coefficients and the overall heat</u> transfer coefficient

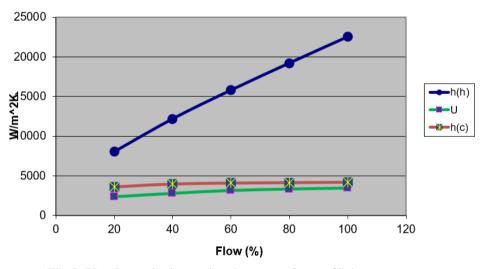


Fig 3: Varying velocity against heat transfer coefficients

As flow rate increases, all the values of heat transfer coefficients increase. However from the graph, we can see that the hot water coefficient h_h increases much more significantly as only the flow rate of the hot water is increased.

As velocity increase, the flow of fluid changes from laminar to turbulent flow. As flow changes to turbulent, secondary flow such as eddie flow will be generated, causing the fluid particles to flow in random directions. This will allow the fluid to have an additional way to lose heat via convection internally more effectively. Hence, causing the heat transfer coefficient for h_h to increase much drastically.

6.3 <u>Sample calculations</u>

$$\dot{Q}_h = \dot{m}_h c_p (T_3 - T_6)$$

= 50(4.18)(66-58)
= 1672 W

$$\dot{Q}_c = \dot{m}_c c_p (T_{10} - T_7)$$

= 20(4.18)(50-31.3)

Restricted 4 (revised wef 2 July 2018)

= 1563.32 W

For velocity at 60%:

$$\begin{array}{l} \overline{\frac{\dot{Q}_h}{(T_3 \cdot T_7) \cdot (T_6 \cdot T_{10})}} \\ U &= \frac{\frac{\dot{Q}_h}{(T_3 \cdot T_7) \cdot (T_6 \cdot T_{10})}}{\ln \frac{T_3 \cdot T_7}{T_6 \cdot T_{10}}} A_m \quad , \qquad \qquad A_m = 0.0288 \ m^2 \\ &= (100)(4.18)(67.3 - 63.1)/[\{[(67.3 - 57.6) \cdot (63.1 - 29)]/\ln[(67.3 - 57.6)/(63.1 - 29)]\}(0.0288)] \\ &= 3140.7819 \\ &= 3140.8 \\ h_h &= \frac{\frac{\dot{Q}_h}{(T_3 \cdot T_1) \cdot (T_6 \cdot T_2)}}{\ln \frac{T_3 \cdot T_1}{T_6 \cdot T_2}} A_h \quad , \qquad \qquad A_h = 0.0261 m^2 \\ &= 1755.6/[\{[(67.3 - 65.6) \cdot (63.1 - 54.5)]/\ln[(67.3 - 65.6)/(63.1 - 54.5)]\}(0.0261)] \\ &= 15803.55803 \\ &= 15804 \\ h_c &= \frac{\frac{\dot{Q}_c}{(T_1 \cdot T_7) \cdot (T_2 \cdot T_{10})}}{\ln \frac{T_1 \cdot T_7}{T_2 \cdot T_{10}}} A_c \quad , \qquad \qquad A_c = 0.031 m^2 \\ &= 16(4.18)(57.6 - 29)/[\{[(65.6 - 57.6) \cdot (54.5 - 29)]/\ln[(65.6 - 57.6)/(54.5 - 29)]\}(0.031)] \\ &= 4087.283441 \\ &= 4087.3 \end{array}$$

6.4 Observations

As we did not conduct the experiment itself, we cannot observe any possible experimental uncertainties associated with the measuring instrument or sensor. However, we know that when measuring the rate of heat transfer, some amount of time is required for the readings to stabilise. This could be one possible experimental uncertainty associated with the sensor. Other possible discrepancies have been explained in 6.1 and 6.2 respectively.

6.5 Bonus question

Why do you think the heat transfer coefficient U does not increase as much as the heat transfer coefficient h_h ?

$$U = \frac{1}{\frac{1}{h_h} + \frac{\Delta x}{kA} + \frac{1}{h_c}}$$

Similar to the reason why convection is the main source of heat transfer. As U is related with h_h , when value of h_h increases, $\frac{1}{h_h}$ will become smaller and smaller. As the value becomes smaller, it can be approximate to be 0 and hence negligible for the calculation of U.