NANYANG TECHNOLOGICAL UNIVERSITY

School of Mechanical and Aerospace Engineering

EXPERIMENT E3.3: COMPUTER MODELLING, SIMULATION AND CONTROL OF AN ELECTROMECHANICAL SYSTEM

LOG SHEET

Name: <u>CHIA CHIN ANN CALEB</u> Matr. No.: <u>U2121391K</u>

Date: <u>16 MARCH 2023</u> Time: <u>0930HR TO 1230HR (AM / PM)</u>

Submitted to: PROF XIE MING

6.1 Open Loop Response

(a) From the step-response graph obtained for the open-loop system, the amplitude does not stabilise into the 2% error range over time. Thus, the open-loop system is unstable.

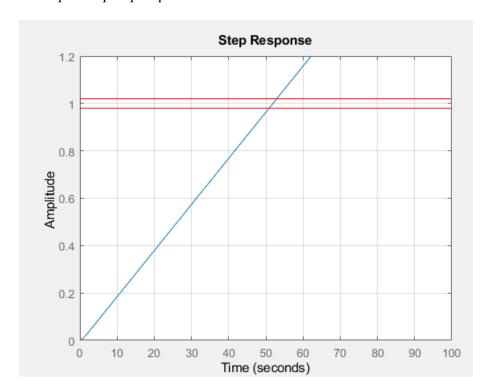
(b) Magnitude: -49.5 dB

Phase: -149 degrees

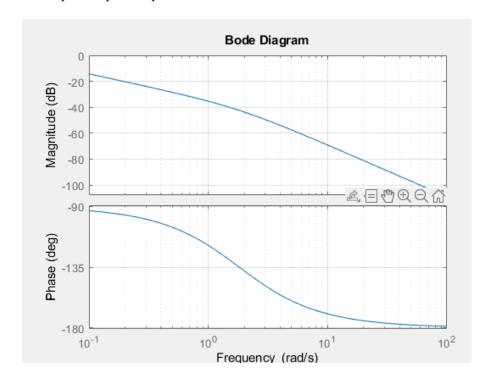
6.2 Closed Loop Response

(a)	Type of response	k	Mp	tp	ts	error (%)
	Under damped	<mark>47</mark>	4.43%	3.40	4.63	2
	Critically damped	<mark>25</mark>	n/a	n/a	5.79	2
	Over damped	17	n/a	n/a	9.85	2

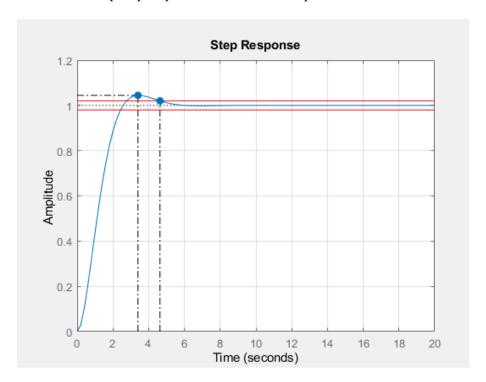
(b) As k increases, the peak value (Mp) will increase while the settling time (ts) will decrease.

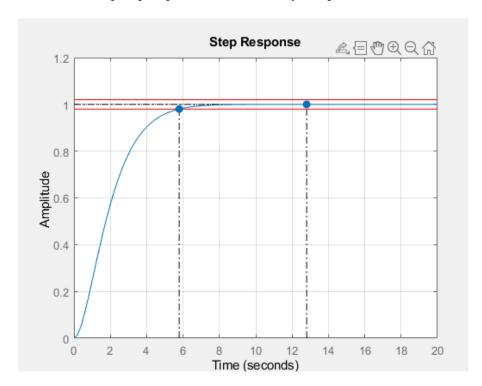

7 Conclusion

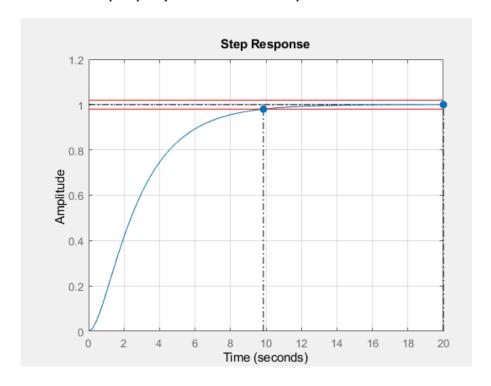
No, the open loop is not stable as the value did not stabilize into the 2% error range over time.


As for the closed loop, I was able to design a stable positional control system that met the desired specifications. The k value used (k = 47) was able to create a response within the desired specifications: peak value overshoot (Mp) = 4.43%, settling time (ts) = 4.63s, and error = $\pm 2\%$.

8 Plots


1. Open-loop step response


2. Open-loop Bode plot


3. Closed-loop step response for the underdamped condition

4. Closed-loop step response for the critically damped condition

5. Closed-loop step response for the overdamped condition

