
Objective: to familiarise the students with using the course gear catalogue to select gears that satisfy design requirements of strength, speed and space and avoid gear interference.

Task: You are to select a set of spur gears that operates under the following conditions.

Power transmitted = 1.2 kW Input speed = $\frac{3100 \text{ rpm}}{130 \pm 3\% \text{ rpm}}$ Output speed = $\frac{130 \pm 3\% \text{ rpm}}{130 \pm 3\% \text{ rpm}}$ All round clearance = $\frac{3 \text{ m m}}{130 \pm 3\% \text{ rpm}}$

Enclosure is as shown. Shaft axes are to be aligned as shown.

- a) Study the guidelines on selection of spur gears given in the course catalogue for NOZAG spur gears. The sizes of spur gears are also available in this catalogue.
- b) Select the gears for a quadruple (4 stage) gear reduction arrangement that will meet the speed, space and strength requirements. Note: you can attempt a triple or double gear reduction arrangement which is more challenging and hence gain a better grade!

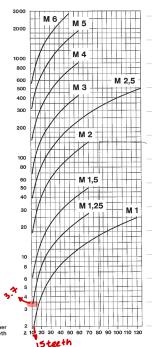
b) Select quadruple (4 stage) gear reduction arrangement

c) Show full detailed calculations in the selection of the gears, and also show determination of the 2 outermost gears in the compound gear train and hence the outermost dimensions in the compound gear train.

Speed Ratio (SR) =
$$\frac{\text{In put Speed}}{\text{Out put Speed}}$$
,

SR_T = $\frac{3100}{130}$ = 23.85

Train Speed Ratio o (Assume Same SR for each Stage)


SR_T = SR₁ × SR₂ × SR₃ × SR₄ = SR⁴

SR = $\frac{4}{23.85}$ = 2.209808223

 ≈ 2.21

Stage 1

$$T = \frac{P}{w}$$
, $T_1 = \frac{P_1}{w_1} = \frac{1.2 \times 10^3}{2\pi} = 3.70 \text{ Nm}$

From Table 2-056
—> m _i = 1.25
→ N, = 15
T, = 3.70 Nm
Finding N2 & T2:
Finding $N_2 \leq T_2$ 8 As $SR = \frac{N_2}{N_1}$, $N_2 = 2.20988223$ (15)

N2
$$\approx$$
 33.15 teeth

N2: no of teeth selected for gear $\lambda = 35T$

$$\frac{T_G}{T_p} = \frac{N_G}{N_p} = \frac{T_2}{3.70} = \frac{35}{15}$$

$$T_2 = 8.633 Nm$$

Table: combinations of number of teeth for spur gears in mesh to ensure no interference.

For a 20°, full-depth pinion meshing with a gear			
Number of pinion teeth	Maximum number of gear teeth		
18	Infinite		
17	1 309		
16	101		
N =15	45		
14	26		
13	16		

.. No interference

Stage 2

$$T_2 = T_3 = 8.633Nm$$

From Table
$$Z - 056$$

Tinding $N_4 \ge T_4$:

 $\longrightarrow m_3 = 1.5$

As $SR = \frac{N_4}{N_3}$, $N_4 = 2.20988223$ (15)

 $\longrightarrow N_3 = 1.5$
 $N_4 \ge 33.15$ teeth

 $\longrightarrow T_3 = 8.633 \, \text{Nm}$
 $N_4 : \text{ no of teeth selected for gear } 4 = 35T$
 $\frac{T_G}{T_p} = \frac{N_G}{N_p} = \frac{T_4}{8.633} = \frac{35}{15}$
 $T_4 = 20.14 \, \text{Nm}$

Stage 3

Tq = Ts = 20.14 Nm

Finding N6
$$\leq$$
 T6 $\stackrel{\circ}{\circ}$

As SR = $\frac{N_6}{N_5}$, N6 = 2.20988223 (15)

From Table \neq -056

N6 \approx 33.15 teeth

N6: no of teeth selected for gear 6 = 35T

Ns = 15

T₆ = $\frac{N_6}{N_p}$ = $\frac{T_6}{20.14}$ = $\frac{35}{15}$

T₆ = 46.99 Nm

Stage 4

To =
$$T_7 = 46.99 \, \text{Nm}$$
 Finding N₈ $\leq T_8$.

$$SQ = \left(\frac{35}{15}\right)^3 \times \frac{N_8}{15}, \quad N_8 = 28.16$$
From Table Z-056
$$\longrightarrow M_7 = 2.5$$

$$\longrightarrow N_7 = 15$$
N₈: no of teeth selected for gear 8 = 28 T
$$\longrightarrow T_7 = 46.99 \, \text{Nm}$$

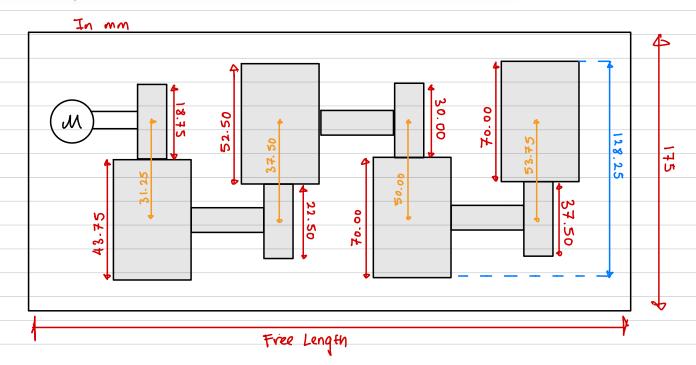
$$\frac{T_G}{T_p} = \frac{N_G}{N_p} \Longrightarrow \frac{T_8}{46.99} = \frac{28}{15}$$

T8 = 87.71 Nm

Checking

$$\frac{N \text{ in}}{N \text{ out}} = \frac{N_2}{N_1} \times \frac{N_4}{N_3} \times \frac{N_6}{N_5} \times \frac{N_8}{N_7}$$
 $\frac{3100}{N \text{ out}} = \frac{35}{15} \times \frac{35}{15} \times \frac{28}{15}$

Nout = 130.73 rpm


(within range; 130± 3% rpm)

From twir respective tables

			1 TOWN 1	16mc	pecine	I NINE?
Gear	N	m		da	9′	Centre Distance
1	15	1.25		21.25	18.75	43.75+18.75
2	35	1.25		46.25	43.75	2
3	15	1.5	_	25.5	22.5	52.5 + 22.5 = 37.5
4	35	1.5		55.5	52.5	2
5	15	2 -0		34	30	70 + 30 = 50
6	35	2.0		74	70	2
7	15	2.5		42.5	37.5	70 + 37.5 = 53.75 -
8	28	2.5		75	70	2

Check Dimensions &

 d) Make a dimensioned sketch of the compound gear layout (not necessary to scale).

3 Stage Gear Reduction

Speed Ratio (SR) =
$$\frac{Input Speed}{Output Speed}$$
,
 $SR_T = \frac{3100}{130} = 23.85$

Train Speed Ratio : (Assume same SR for each stage)

$$SR_T = SR_1 \times SR_2 \times SR_3 = SR^3$$

 $SR = \sqrt[3]{23.85} = 2.8784$

Stage 1

$$T = \frac{p}{w}$$
, $T_1 = \frac{p_1}{w_1} = \frac{1.2 \times 10^3}{\frac{2\pi}{60} \times 3100} = 3.70 \text{Nm}$

Finding
$$N_2 \leq T_2$$
 :
As $SR = \frac{N_2}{N_1}$, $N_2 = 2.8784$ (15)

N2 2 43.176 teetn

N2: no of teeth selected for geor 2 = 42 T

$$\frac{T_G}{T_p} = \frac{N_G}{N_p} = \frac{T_2}{3.70} = \frac{42}{15}$$

T2 = 10.36 Nm

<u>Table: combinations of number of teeth for spur gears in mesh to ensure no interference.</u>

For a 20°, full-depth pinion meshing with a gear		
Number of Maximum num pinion teeth of gear teeth		
18	Infinite	
17	1 309	
16	101	
N ,=15	45	
14	26	
13	16	

: No interference

Stage 2

T4 = 29.01 Nm

Stage 3

T4 = Ts = 29.01 Nm Finding N6
$$\leq$$
 T6 $\frac{N_6}{N_5}$, N6 = 2.8784 (15)

From Table \neq -056

N6 \approx 43.176 teeth

N6: No of teeth selected for gear 6 = 42T

T6 = 87.03 Nm

T6 = 87.03 Nm

$$\frac{Nin}{Nout} = \frac{N_2}{N_1} \times \frac{N_4}{N_3} \times \frac{N_6}{N_5}$$

$$\frac{3100}{\text{nout}} = \frac{42}{15} \times \frac{42}{15} \times \frac{42}{15}$$

(Not within range; 130± 3% rpm)

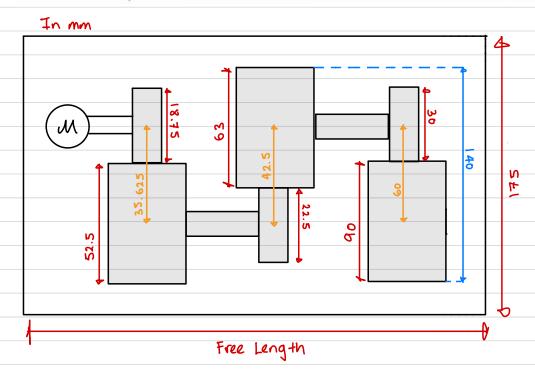
then

$$\frac{3100}{\text{Nout}} = \frac{42}{15} \times \frac{42}{15} \times \frac{45}{15}$$

(within range; 130± 3% rpm)

From their respective tables

Gear	2	m
1	15	1.25
2	42	1.25
3	15	1.5
4	42	1.5
5	15	2.0
6	45	2.0


da	٩	Centre Distance
21.25	18.75	52.5 + 18.75
55	525	2
25.5	22.5	63 + 22.5
6	63	= 42.5
34	30	90 + 30 = 60
94	90	2 = 00

Check Dimensions &

$$\frac{1}{2}(da)_4 + \frac{1}{2}(da)_6 + C_5-6$$

$$\frac{1}{2}(66) + \frac{1}{2}(94) + 60 = 140 \text{ mm } 4 175 \text{ mm}, \text{ Within Range}$$

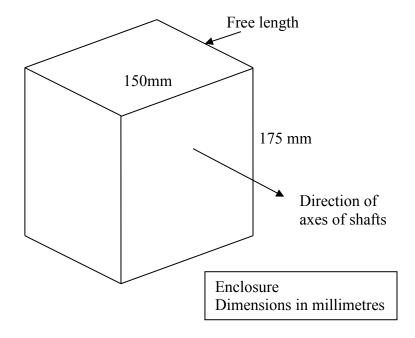
d) Make a dimensioned sketch of the compound gear layout (not necessary to scale).

MA3001 CA4 Individual Assignment Selection of Spur Gears

Objective: to familiarise the students with using the course gear catalogue to select gears that satisfy design requirements of strength, speed and space and avoid gear interference.

Task: You are to select a set of spur gears that operates under the following conditions.

Power transmitted = 1.2 kW


Input speed = $\frac{3100 \text{ rpm}}{100 \text{ rpm}}$

Output speed = $\frac{130 \pm 3\% \text{ rpm}}{130 \pm 3\% \text{ rpm}}$

All round clearance = *to be assigned by Tutor*

Enclosure is as shown. Shaft axes are to be aligned as shown.

- a) Study the guidelines on selection of spur gears given in the course catalogue for NOZAG spur gears. The sizes of spur gears are also available in this catalogue.
- b) Select the gears for a quadruple (4 stage) gear reduction arrangement that will meet the speed, space and strength requirements. *Note: you can attempt a triple or double gear reduction arrangement which is more challenging and hence gain a better grade!*
- c) Show full detailed calculations in the selection of the gears, and also show determination of the 2 outermost gears in the compound gear train and hence the outermost dimensions in the compound gear train.
- d) Make a dimensioned sketch of the compound gear layout (not necessary to scale).

Requirements: Individual submission at the end of the session.

Suggested Steps:

- 1. Decide on gear ratio for each pair of meshing gears in the gear train.
- 2. Determine torque on each gear.
- 3. Decide on either number of teeth or module to select corresponding module or number of teeth
- 4. Check for no interference of meshing gears using the table below
- 5. Check for availability of gears from course catalogue
- 6. Check if final arrangement fits into the enclosed space (incl. addenda and all round clearance) by determining the 2 outermost gears in the compound gear train and hence the outermost dimensions in the compound gear train.

<u>Table: combinations of number of teeth for spur gears in mesh to ensure no interference.</u>

For a 20°, full-depth pinion meshing with a gear		
Number of pinion teeth	Maximum number of gear teeth	
18	Infinite	
17	1 309	
16	101	
15	45	
14	26	
13	16	