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MA3005/MA370S5 - Control Theory, Teaching Plan, Sem 1, 2025-26

Lecture Venue: LT1, Tuesdays, Time: 1:30 pm to 3:20 pm Tutorials
Lecture Dates . Week .
Lecture (Tuesdays) Lecture Topics No Tutorials
1 12t Aug 2025 Introduction to Systems and Laplace Transformation, Block Diagrams 1
9 19" Aug Block Diagrams, Mathematical Modelling of Mechanical & Dynamic ) Tutorial 1
Systems
3 26™ Aug Mathematical Modelling of Mechanical & Dynamic Systems 3 Tutorial 2
4 2nd Sept 2025 Systems Response and Stability 4 Tutorial 3
5 9th Sept Systems Responses : First-Order and Second-Order Systems 5 Tutorial 4
6 16" Sept Basic Control Actions, Process Controllers 6 Tutorial 5
CA 1 - Quiz (20 % ), 2374 Sept , Tuesday, 2:00 pm to 3:00 pm
rd ’ 9 ) ’
CAl 237 Sept Venue —LT 1. Detailed arrangement will be announced at a later. / CAl
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MA3005 Control Theory

The aims of this module are to:

Introduce feedback systems and the concepts of block diagrams and

transfer functions and different types of controllers

Introduce the concept of stability and performance criteria of feedback systems

Explain the concept of root locus and its application to classical control design

Introduce frequency response and Bode diagrams-based analysis and design techniques

Having successfully completed the module, you will be able to:

determine the step transient response of a system

determine the frequency response of a system

General transferable skills

Mathematical skills
Graph plotting techniques, especially Bode diagrams
Measurement and instrumentation techniques

Scope of the course

Introductory course into control systems engineering
Mainly concerned with “classical” control theory
Restricted to linear time invariant systems.
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Reference Textbook.

Modern Control Engineering, Katsuhiko Ogata, 4" Ed, or later, Prentice Hall.

Reference Books (Control Theory)

Introduction to Automatic Controls, H L Harrison, J G Bollinger, 2™ Ed, International Textbook
Company, 1969.

System Modelling and Control, ] Schwarzenbach, K F Gill, 2™ Ed, Edward Arnold, 1979.

Introduction to control system analysis and Design, F J Hale, 1* Ed, Prentice Hall, Inc, 1573.
Control Systems Engineering, Nise, 5" Ed, John Wiley 2008.

Feedback Control of Dynamic Systems, G F Franklin, 1D Powell, AE Emami-Naeini, 5*" Ed, Pearson
International Edition ,2006.

Modern Control Systems, RC Dorf, RH Bishop, 11 Ed, Pearson International Edition ,2008.

Instrumentation and Control Systems, William Bolton, 3™ Ed, Elsever & Newnes.

Linear Control Systems Engineering, Morris Driels, International Eds, McGraw-Hill International, 1935.
Automatic Control Engineering, F H Raven, International Eds, McGraw-Hill International, 1555.
Automatic Control Systems, B C Kuo, 5" Ed, Prentice Hall Inc, 1987.

Feedback Control Systems, 1V de Vegte, 1* Ed, Prentice Hall Inc, 1986.

Control System Technology, C 1] Chesmond, 1% Ed, Edward Arnold, 1984,

Introduction to Control System Technology, RN Bateson, 3™ Ed, Merrill Publishing Company, 1983.

Control System Engineering, M E El-Hawary, 1st Ed, Reston Publishing Company, 1984.



L. ORIENTATION TO AUTOMATIC CONTROL
1.1 H ical Development
James Watt - 1788 - Flyball governor
Hurwitz - 1875 - Stability analysis
Routh - 1884 - Stability analysis
Minorsky - 1922 - Servomechanism
Hyquist - 1932 - Response of O/L to sin variation
Bode - 1938 - Freq - @ characteristic - 0/L system
Evans - 1948 - Root Locus

Basis of eclassical control theory.

1.2 Control Theory

Deals with dyqamic response of system to commands or disturbances,

=

Classieal Hﬂég;n
- T.F. concept with - State Variable Concept
Analysis & Design in with emphasis on matrix
laplace & Freq Domain alegbra
- More emphasis of physical - Mathematical technique
understanding

Open loop control

= gontrol v/v adjusted to make output equal to input, but not
readjuated to keep the 2 equal.

= (/L with certain safeguard very common, ie. guiding a process
through a sequence of predetermined steps.

1.3 EEEELRiJEEEl%LiBE&Em

Open- \ 0,1,
- no feedback

1.4  Scope of C/L Contrel

C/L Control

l

w
Close-1loo

c

&

-  with feedback
- error actuated

l (Mech)

!

Electrical Einetic Process
l {(Servos)

1 | P J i 1
Voltage & Amplifier Temp Pressure Flow Density
surrent
repgulator

v | 1
Force {torque) Position Velocity Acceleration

Closed loop control

= to improve performance, operator adjust v/v based on

observation of system error, e.

—~ Feedback control system, automates this aection.

- error used to adjust control v/v by means of actuator.



Feedback Control System has 2 categories

1. Regulator System = function Is to maintaln output constant,
"7 despite unwanted disturbance to the
system. Input is seldom changed.
2. Follow-up System = keep output in close correspondence with
' input, which is always changing.

1.5.2

Follow-up System - set point frequently changed

* AUTOMATION is essentially sequence-controlled mechanisation

1.5 F c stem

1.5.1

- 1)

GiL szstEm - Mannal - HNo thermostat

CHS CHS -
Energy —™ & ? Room temp

room

- 2) C/L system & Automatic (¢ thermostat)
]
desired + e CHS &
(tl) room " > Amp » v/v ! Boom
Lemp -

Regulator - maintain output constant, input seldom changed

~Central Heating system

Room Temp (tz)

Antenna
- desired position Bearing
« Batellite -+ Tracking (8.
bearing > Receiver [ Motor[HGearing[*|Antenna
(2 Sk
) Forward path elements
Comparison
Input - Output
Control | Comection | Process
. law element
Required
value _
<] Measurement |«
Feedback of a signal
which is a measure
of the variable being controlled

Basic element of a control-loop control system




satellite

antenna

antenna i
antenna

Figure 7 Using antennas to communicate through a satellite

antenna
angular velocity

Vi

»{ amplifier |——3 motor }———— gearing ——»| antenna {—p»—

velocity control
voltage

(4 ? Open-loop velocity control of antenna

input
voltage

Figure ® A diagram of the antenna
drive system



controller

desired
position

A closed-loop antenna system

transducer

velocity error

voltage

velocity control
voltage

Va

Q + 2=063v,

K:

tacho-generator

Figure 1O Motor velocity control loop

sarhl}'l'te tracking motor system gearing structure
beam? receiver (including veI?city
feed back) -
. . 10000 - .
A 13750 | ¥ | 026, +1.336, | O~ O | 6, + 268, + 1006,
- Vrad - =y 1 =1006,
6o
angular error motor gearing
error voltage position output position

Figure A block diagram of antenna control system
34

angular
velocity

antennéf

bearing



1.5 Application of Control Theory has 2 phases

1.5.1

1.5.2

1.5.3

Dynamic Analysis - determination of response of a plant to
commands, disturbances and changes In plant parameter,

Control System design = If dynamic analysis 1s unsatisfactory
and modification of plant is unacceptable design phase is
necessary to seleet control elements needed Lo improve dynamie
performance to acceptable level.

Methods of Analysis

1. Consider system performance in time domain by measuring
output response . for given input eg. step, ramp,
SLnusoidal.

2. Frequency domain - output response to sinusoidal input is
" considered in steady state only trasient allowed to
subside, before measurement made.

- very common in practice fto work in this domaln even to the

extent of writing specifiecations.

Requirement of Control Theory

Ertor

Stability
Aeecuracy - specified in terms of errors

steady state (s.s.) - due to static friction as output
ceases to move
transient - can reverse sign, overchoot due to energy
(stored in inertia)

Speed of response

(stability & accuracy incompatiable & a good design is compromise
of both)#*

Rig) + E({s) HEY
— et G5 ] —
Bis)
ey |
His ) pafomm—t

Eg: If system is subjected to sudden change of input

= transient period should be short and its response should neot be
excessively oscillatory.

= steady state error must be small

Transient response and steady state error charagterisbies can be
improved using feedback and the motivation for feedback

]

reduce effect of parameter variation
reduce effect of disturbance input

1

1

improve tranient response characteristics
reducing steady state error

1

>+

w
L)

k- step response for low gain Fig5- S.r. - High gain

= High aecuracy and good stability are 1ncompat1ab1e and a good design

is a compromise bebween the two.




1.8.4 Deterministic (system or wariable)

- future behaviour is predictable and repeatable within

reasonable limits.

- 1f not, system-stochastic or random analysis-based on

Probability Theory.

1.8 tives fo stems Classifiecat i
1.8.1 Stationary or time invariant system
- parameter do not vary with time
- output is independant of time
- coeff of describing d.e. - constant
e.g.: ¥+4xy+2x*=3t - non linear
1.8.2 =, sten
- principle of superposition holds
Ty —————3 e
Systen —>
I >~
1, = 0, Apply r, output - o,
ry = 0, Apply x, output - ¢;
Apply both -- 1r; + 13 = ¢y + ¢; (output)
1.8.2 Lumped_parameter

physical characteristics are assumed to concentrate in one
or more lumps & thus Independant of spatial distribution.

E.g. bodies - assumed rigid & treated as point mass

spring - massless, temp-uniform
electrical leads - resistanceless

Pistrubuted parameter

Bodies - elastic

springs - have distributed mass
electrical leads - distributed resistance

temperature - varying across a body

1.8.5 Continuo v b stem

(e}

L=

- all system variables are continuous function of time.

- describing equations are differential equation.

Single Varisble
Discrete Variable System

x{t)

|

t, t, ty t,

- has one or more variable known only at particular instant

of time.
- equations are difference equation.

- if time interval controlled-sampled data system.



Discontinuous Variable

x{t)

- ey rmm wrEmrEE w e mmeT RE Ew e ——

ALTERNATIVE FOR SYSTEM CLASSIFICATION

Static or Dynamic Systems

Statie systems are composed of simple linear gains or nonlinear devices and
deseribed by algebraic equations, and dynamie systems are described by
differential or difference equations.

Continuous—-time or discrete-time aystems

1) %+5tx+6x=8y

Lumped parameter, continucus, non stationery, SISO

Continuous—time dynamic systems are described by differential equations, and
dizorete=time dynamic systems by difference equations.

Linear or nonlinear syatems

2) %+7x+3x%=2y+3y

Non linear, lumped parameter, stationery

Linear dynamic systems are described by differential (or difference)} equations
having solutions that are linearly related to their inputs. Equations
describing nonlinear dynamic systems contain one or more nonlinear terms.

3) 2%y &%y
ot? ox*

Distributed pavrameter, stationery, linmear

Lumped or distributed parameters

Lumped—-parameter, continuous—time, dynamic systems are described by ordinary
differential equations, and distributed-parameter, continucus-time, dynamic
systems by partial differential equations.

4)  X+85x+3x=2y+3y+4z

Multivariable, stationery, lumped parameter

Time-varying (non-stationary) or time-invariant stationary systems

5 3%+30x%+21x=2y

lumped parameter, SISO, linear, statiomery

Time-varying dynamic systems are described by differential (or difference)
equations having one or more coefficients as functions of time. Time-invariant
{constant-parameter) dynamic systems are described by differential (or
difference) equations having only constant coefficients,.

Deterministic or stochastic gystems

Deterministic systems have fixed (nonrandom) parameter3 and inputs, and
stochaatic aystems have randomneas in one or more parameters or ilnputs.



Let F(s) be the Laplace Transform of f(t),

written as
L f = F = -st F(t) dt
s=0+jw i (=) [: (t)
0
df B
Then L = sF(s) -|f(o)
d°f 2 Py
L{E—E} = $F(s) - Sf{n} - ﬁ(g]
t
n .
n .=
R O D i G
dt $ 2 dt
Shift Theorems L{e_at f{t)}t = F(s + a)
L{f(t +a)) =e® F(s)

{1} Shift Theorem

= in Automatic C.5 - known as dead
time In Process Industry =
transport lag

(2) Convolution Theorem - product of 2 L.T to form L.T of

Convolution Integral t-dummy time
variable

Convolution Theprems "

7Y {x(s) ()} =

x(t = 1)y (1) dr

J

t
f y(t - t)x {1} dr .
0

Final Value Theorem 1im f(t) = 1im sF{s)
trer S+0

Initial Yalue Theorem lim f(t) = 1im sF(s)
ot G0

(3) Final Yalue Theorem -~ useful in determining steady state

acouracy.

(4) TInitial Value Theorem - useful in Inverse Transform when

initial condition known to be zero

Some basic Laplace Transforms

f(tj (0 for t < 0) F(s)
f(t) = const = u(t) Tfs
f(t) = at a2
£(t) = at™/n! 5 /S"”
f(t) = sin wt : m/52 + wz)
f(t) = cos wt sf(s2 + mzj
f(t) = t sin ot 2ws/(s° + w")° .
f(t) = t cos wt (52 - mz}n'{s2 -l-.mz]



Time domain () ! Laplace domain (s)
i
f(® F(s)
>
(differential equation) ; (algebraic equation)
i
e Cr =]
| o
e

solution

final solution

(in time domain) < . (in Laplace domain)




TABLE 10.1

Laplace Functions and Their Carresponding Time Funcrions

Time functon f(f)

Laplace Transform F (s)

A unit impulse 1
A unit step 1
s
f, a unit ramp 1
2
e™ | exponential decay 1
s+a
1—e ¥, exponential growth a
3(s +a)
te™ 1
(s+a)*
y i
b= . 55 +a)
el — o= b—a
(s +a)s+b)
(1 —at)e™™ §
(s+a)*

10 b : - ab
1_ - al + - Il -
b—a.  b—a 5+ a)s + )
11 a E—LH' e~ 1
b—ac—0)  (c—afa-b  @-0F -9 G+ a)s+b)s+0)
12 sinwft, a sine wave W
52 + u?
13 cos wk, a cosine wave 5
82+ u?
14 e ¥ sinwt, a damped sine wave w
(s+a)y +o?
15 e ' cos wt, a damped cosine wave s+a
(s+a)y +ou?
16 w S wr
e s lgin w1 — (3 v
VI—C ¢ 2+ 2lws+uP
17 1 —Cu s / wr
1— e ain (w1 — 2+ &), 008 b=
V1-2 ( ctre) =< 5(52 + 2(us + o)

1.

A system gives an output of 1/(s + 5). What is the output as a function of time?
The output is of the form given in Table 10.1 as item 4 with 2 =5. Hence the time function is e ' and thus describes an
output which decays exponentially with time.

2.

A system gives an output of 10/[s(s + 5)]. What is the output as a function of time?
The nearest form we have in Table 10.1 to the output is item 5 multiplied by 2 to give 2 X a/[s(s + a)] with a=5. Thus
the output, as a function of time, is 2(1 — ™).
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Spring mass damper system (with an input) Translational system

k(x~y)
' - input

k %_j‘x i My 1

M [-] - output i

_]_ (rt:-?anse) l c:l%
A

ET:[ EREE BoDY
77-!7'7' PIAGRAM .

my = k(x-y) - ¢y
my + C}'r + ky = kx

Xy ow,?
2
Sﬁ"l*i;mns *wﬂ

Y=

BLockk DIAGRAW

Inertial force = external forces

Ms?Y(s) +CsY(s) + KY(s) = KX(s) = Force

Y(s) _ K

w3

Hence TF:

X(s) Ms?+Cs+ k

s2+ 2L W, S+ W5

here & = w? , =
Werm R m

20w,

16
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Step response of a second-order system for underdamped case, (0 < { < 1]

= The general form of inverse transformation is

¥it) =£u:{a + jb)je* sin (bt + &) + Ky

o A pair of complex conjugate roots when multiplied together yields the following
quadratic:

s ~ (a+)]fs — (a —jb)] = 5* ~ 2as + & + b

Laplace functions and their corresponding time functions

sinwt, a sine wave e
cos wi, a cosine wave = 3“#
+
e sinwt, a damped sine wave !
g {s+a)! + ot
e cos wt, a damped cosine wave s+a
- (s+a)? + u?
w ) u?
e (wigin 1-2 . EE—
Vi-¢ - ¢ $ + 2(uws + u?
1 il a uP
1- e~ gin (wy/1 - i+ &), c08 =
v (wy/1— 2+ ). c08 6= TNt

Percent overshoot

__m
%OS =e VI-¢ v

17
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3. WORKED EXAMPLE A3.2 . S+ S+
[S)_5‘3+35?+193+12_(5+3)(5+4~)(5+l)
A3.1
G(s)= o+ = C\ + C2 L+ Ca Expand into partial fraction & use Heaviside Theorem,
(5+2)%(5+3) [(S+2)? (5+2) S+3 1@
c c
using heaviside theorem L Cy = ~3+2 =_1_ (S+3)+(5+4)+(s+1)
(-3+4)(-3+1) 2
.5:1:[“2*1] =21 fo_ mAv2 2
~2+3 ..., 2 (-4+3)(-4+1) 3
dfsS+1 S+3)-(S+1 Ca= LR -3
z=_[ ] = (25) SO o 3T (C1+3)(-1+4) 6
dS S+3 Fm=22 (‘5."'3)2 I
G{t}_le'aﬁ_gg"ﬁ_l_le'l
2 3 6
C [ﬂ] -
P l(-3+2)* ) . To factorise:
5%+85%+1985+12
Inverse Transform : G{E}=EE-E!—tE —op~ ¥ Test : whether ( s+1) is a factor, subs s = -1 in the polynomial above,
| A and if result is 0, then ( s+1) is a factor
() =va g v
C\ C» Ca

(S+2)? (S+2)| S+3 NN~y

2a




" -

A3.3

%+3x+2x=5U (1)

.(t)=1,t>0
Taking L.T on both sides

I {ty-step function

0.t<0
=S%X(s8)-Sx(0)-X(0)+3S5X(s) Initial Condition
~3X(0)+2X(s) =§ X(0)=-1
X(0)y=2

Rearranging and substitute initial conditions

-8%-5+5 5 5 3
X(s)= = - +
S(S+1¥&E+2) 25 S+1 2(5+2)
) —t, 3 -zt
—_——— — ::,.0
X(L) > Se t5e (t>0)
limit X(¢t) = limit SX(s) = 5
= o S5-0

X(s)[s?+3s+2]+s-2+3 =5/

2_s-1

S
s2+3s+2

X(s) =

-5%-38+5
— S(S+1)(S+2)




4 C, | €y K, K,
F{3)= > = “fh o +H
S2(S+1)(§+2) S%2|S S+1|[S+2
. 3
= =2
€2 [(5+1)(5+2)_3-u
. _d[ 4 1 17 -4@2s+3) s
' ds{ S%+35+2] [ (S2%+3s5+2)% |,
) 4 )
K, = = 4
'ls?(s+2) ...
) A -
. =-1
Kz | SE(S+1) .5
3 4 1
.F(s}=£-—+ ~




75
52 + ds + 13) (s + 6}

¥is) = [

Solution. Equating coefficients to obtain the values of a and b for the quadratic yieldg
—2a=4, or a==-2, and S+ =13, or b=+/13—4 =3 Evaluation of
K(a + jb) gives

) = (2 ~ Als)
K{a+jb) = [(32 2as+ﬂ2+b1]3{s)]l-ﬂ+ﬁ

75 75

B ('i+ﬁ).r=-2+ﬁ=4+j3

As shown in Fig. 6.2, the vector whose real part is 4 and whose imaginary part is 3
may be expressed in polar form as

4473 =75/369"

(6.25)

Hence, Eq. (6.25) becomes Y
75
K = =15/— e
(a+/5) =3 AL 15/-36.9° 3 |
Thus 9 i
K (a+b)| =15 369 ;
and

o= K(a+b)==369°

The general form of the inverse transformation is

$) = 2 |K(a -+ JB)le sin (bt +2) + ;e

Evaluation of K, gives

Ki=lim —p B _,
g S AT 25

Thus the desired result is
¥(1) = Se~¥ sin (3t — 36.9°) + 3¢ (6.26)

Application of the relationship sin {x + £) =sin « cos § + cos a sin § in which
g =3t and f = —369" yiclds the alternate form

¥(f) = e ¥(4sin3f — 3cos 3¢} 4 3™ (6.27)

This form of the resolt may be obtained directly. The response term due to a pair of
complex conjugate roots a * jb may be written in the form

) = Me"ﬂn(ﬁ: +a) = B; |K (a + jb)|(cos e sin bt + sin & cos br)

= % {4 sin bt + B cos br) (6.28)

where 4 = |K{a+jb)| cos o
B = |K{a + jb)| sin

Figure 6.3 shows the vector K(a + j). Note that the honzontal component is

A=|K{a+jb)|cose, and the vertical component is B = [K(a+jb)|sina

For the preceding example |K(a+jb)| =15 and o= —369° hence A =
15 co8 (—36.9°) = 12 and B = 15 (—36.9°)=—9. For a=-2 and b =3,

Vector representation for (4 + 73).

application of Eq. (6.28) yields for the response due to the complex conjugate

roots

e~¥ (4 gin 3t — 3 cos 3¢)

Kla +jb

=]

+ FIGURE 6.3
Real a¥is  1orzontal compenent A and vertical
component B of vector Kiz + jb).

22




A3.5 7S

Another method for obtaining the response due to complex conjugate roots
results from writing ¥(s) in the form

75 _ As+B
(s2+4s+ 13)(s +6)  (s+2)* +32

Evaluation of the constants yiclds 4 = —3, B =6, and K, =

r{s 4‘I|III|III’_'H/, S-F 3

LK
s+6

3, whence

¥{s) =

s+2)° + 32 s+6
Thus the desited result is
y(1) = Se~H sin (3t — 36.9°) + 3% (6.26)

Application of the relationship sin {(x + §) =sin « cos § + cos @ sin # in which
g =3t and f = —36.9° yields the alternate form

¥() = e % (4sin3f — Jcos 31} + 27

(6.27)

Y(s)=— .
(S2+45+13)(S+6) 4
'y
Equating coeff to obtain « and b
2l. - -~ -
. -2a-=4, a=-2 :
: 569 |
a®+b%=13, . b=3 L
75 75 75 b
K D) = = =
(a*jo) (Sns)s__mﬂ 4+ /3 5736.9
Thus |K(a+jb)|=15, a=sK(a+jb)=-36.9°
General Form of Inverse L.T is
1
y(t}=g]};(a+jb)|e“*sin(bt+aj+f{le"“
7S 75
K= lim = =
. $2+48+13 25
S=-6 s
y(1)=5e *sin(3t-36,9°)+3e "
OR | ¥(t)=e % (4sin3t-3cos3t)+3e™ :
y{£) =Eﬁ_—ﬁ”e"s~in[m+m] = e;|K(a+jb)|(msusinbf+sin-:tnus&r} Kz +jb)

= ?{A sin bt + B cos bi)

where 4 = |K{a +jb)| cos x
B = |K(a+jb)| sin e

(6.

“ sinwf, a damped sine wave <

“ eos wi, a damped cosine wave

®
)

Real axis




r ~-%5 +56 z

$)= = - i T

{) {5+:z_"} + 3 S4+4
—35+2) 3

Another method for obtaining the response due to complex conjugate roots
results from writing ¥{s) in the form

75 As+ B K;

¥(s) ={32+4s+13}(s +6)= (,;+1)1+32+s+ﬁ

Evaluation of the constants yields 4 = —3, B = 6, and K, =3, whence

3 s+2 3

Yis) =4 -3
O =4 T "o s+

Thus the desired result is

y{#) = 5~ 5in (3t — 36.9°)} + 3% (6.26)

3 Application of the relationship sin {x + §) =sin « cos § + cos @ sin # in which
= = 2 5 o e =3t and f = —36.9" yields the alternate form
(S+2) +3 (s +1;]'*'+ € &L y(f) = e ¥(dsin3t — 3cos 3¢) + &~ (6.27)
- e ' sin wt, a damped sine wave w
= = e (s+a)* + u?
if_ [_f; 1 1).}-{-'3'} g ES_,‘_:__}}_P 2 o T '3—' e " cos wt, a damped cosine wave s+a
S +4 B (s+a)’ + u?
.E'I:Ir{_‘ . T < l.‘.'nﬂ"*ril-’;"?(
- Z'E' p - o --(:q..tr.gb S -1 E,"PB row iua ate
ka;'f:ﬁ"' = g |’rf-;— s 3t ~ Gea B-EH:- t Yo [ )‘—”: ( ] ootk
B

o —

= S -2as + a4+ b
L BIEHEREAS . wRard moe=F
ﬂ'}-{f-bﬂi:;l?rr b=73 24




inat,a s A
sinwf, a sine wave -
oos o, a cosine wave $
£+
e sinwt, a damped sine wave o
(G+a) +o?
| e oo wi, a damped cosine wave sta
(s+a)? + o
2
L
S+6
= T .
S +6

Lt
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3. A system has a transfer function of 1/(z + 2). What will be its output as a fundion af time when it is subject to a step
input of 1 V7

The step input has a Laplace transform of (1/5). Thus: R(s) G C(s)

1 1

The nearest form we hawve in Table 10.1 to the cutput of 1/[=(z +2) is item 5 as /2% 2 f[=(z+2)]. Thus the output, as a
function of time, is V(1 — 20 V.

4. A system has a transfer function of 4/(z+2). What will be its output as a function of time when subject to a ramp input
af 2% /57

The ramp input has a Laplace transform of (2/57. Thus: R(s) G C(s)
— —

2 & ==
'Dulput (5] = Cs) ¥ [Input {5:| ;=51{5+2:|

The nearest form we have in Table 10.1 to the output is item 7 when written as |4 % 2/[(z + 2)]] Thus the output, as a
function of time, is| 4t — (1 — e /2] =4 — 21 — e ) V.

5 1—e ™, exponential growth q
(s + a)
6 e 1
(s+a)*
':,." 1— E—u:!J' i7

q 525+ a)




5. A d.c motor drive system has a transfer function of 5/(z +5) and drives a load which has a transfer fundion of
1/(s + 1). What will be the output of the system when the motor has a unit step input.
The overall transfer function will be:

5 1
— ¥
=+h5 =41

Gis) =

The step input has a Laplace transform of (1/5). Thus:

> 1 ] b a
Output (z) = Gis) x Input ()= H— =
Pt = putis) E+3=+1) = S +(s+5) T (s+1)
This is similar to item 10 in Table 10.1 so the output as a function of ime i: b=1/4 , a=-5/4
-1 — = 3 u_ 1l o 3
Output () =1 T &" + T &" I+4E 3"
b—a b—a s+5)s+1) s s(s+a)(s + b)

a=5, b=1




" Determine the partial fractions of:

J3s+1
(s+27

This will have partial fractions of:

A I C
G+ (s+27 i (s+2°

Then, for the partial fraction expression to equal the original fraction, we must have:

X+1_ A B C
(s+2ry (8+2)  (s+2¢ (s+2)?

and so consequently have:

354+ 1=AG+27 +Bs+2)+ C= A2+ 25+ 1) +Bs +2) + C

Equating s? terms gives [0 = A. |Equating s terms gives|3=2A4+B and so|B=3. Equating the numeric terms gives
1=A+2B+ Cand so C= —5 Thus:

35 +1 3 5

(5+27 | +28  (s+2°

28




B
8. Determine the partial fractions of:

25 +1
(524 5+ 1)+ 2)

This will have partial fractions of:

As+ B + C
s24+s5+1 s+2

Thus we must have:

25 +1 _ As+B N C
(2+s+1)s+2) s2+s+1 s+2

and so:

25+1=(As+B)s +2) +C(s*> + s+ 1)

With s= —2 then —3=3C and so|C= —1. |Equating s” terms gives 0=A+C and so A=1. Equating s terms gives
2=2A+B +Cand so B=1. As a check, equating numeric terms gives 1 =2B + C. Thus:

25 +1 s+1 1

E+s+1)+2) L+s+1| s+2

29



The transfer function that relates the output response, C{s) to the input command

R(s), in a control system is given as: > LU}E’_@ - £to5 K(s) = 1
2.(3) (3t2X 345> s
-
5 : S+ ﬂ-5 - -‘é‘- ‘[C' E T o -
R(s) (S+2)(s+5) e
‘\dl = St oS = 0.05 = L
(i) Using partial fractions, determine the output response cft) from the (S *’r’?—*}f 5 {-%) = =
system when it is subjected to a unit step input. >=°
{4 marks) S 2.2 ]
= < ( .H'B] ~5,*: -2 T
(i) Determine the steady state value of the system response when it is
subjected to a unit step input. . S 4.5 =
< ( S —HL) s oiB T lo

4

L o) e T R

2 () C

\
H
\n
i
o
o
it )
s
i
Vo
::;
(s}
N
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{c) A system has an output v related to the input x by the differential equation :

ofs 155 €] =117

!
S +5s b

d’y _dy
45— 46y=
dt2+ dt+ y=x

C:_‘_j_@::

Yis
(1) Determine the transfer function, ) ﬂ‘})

X(s) - |
(3 marks) WPMW 7 th /i |
Y ':(_s"”%s%) s~ s(sTK “f)

&

(11) Using partial fractions, determine the output 142} from the system when it 1s

subjected to a unit step mput. “a’ % C _ -
S 2t Tsrs T sl
s ‘Wﬁ&ﬂf’fwm‘
" ) L =
ﬂ, = 'i"“:’ Z T B
\ -
- -7 | - b @
B="2 A
;= ~2r-l =23
\
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9. A thermocouple has a transfer function linking its volta t V and temperature input of:

30 ¥ 107°

)= Te+1

V/°C

Determine the response of the system when it is suddenly immersed in a water bath at 100°C.
The Laplace transform of the output is:

V(s) = G(s) X input (s)

The sudden immersion of the thermometer gives a step input of size 100°C and so the Laplace transtorm of the input

15 100 /s. Thus:

—4
L 100 _ 30x107* _ o, 01

Vis) = s 10s(+00) sG+01)

The fraction element is of the form a/s(s + a) and so the output as a function of time is:

V=30x10"%1—-¢ "V

5 1—e™®, exponential growth -
sis +a)
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i ‘ 6. [Determine the partial fractioms af:

=+ 4
[+ 1H=+2) 5+ & = 1 —+ &
{(s+ 1)s+2) s+1 s5+2

The partial fractions will be of the form:

A + &
s+1 =+2
Then, for the partial fraction expression to equal the original fradion, we must have:
s+4 A + B Al+2)+Biz+1) ?Atrgié‘ """""" eq12
E+1E+Z s+1 0 s+2 5+1)E+2 T e 4

and consequently:
s+4=dAls+ 2+ Bz+ 1)

This must be true for all values of s. The procedure is then to pick values of = that will enable some of the terms invaly-
ing constants to become zero and so enable other constants to be determined. Thus if ":-':."-E =L we have

(-2 +4=A -2+ +B(—2+1)

and so BE= -2 [f we now let s= —1 then

(—1+4=A—1+2)+B(—1+1)

and solA=3.|Thus

£+4 _ 3 1
{=+1=+2) =s+1 =s+2
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I. STEADY-STATE ANATYSTS AND CLASSIFICATION OF SYSTEMS

Once the absolute stability of a closed-loop control system has been investigated
to ensure that the system possesses a steady state the next step is to analyse
itas steady-state performance or static accuracy, since it is desirable that the
ultimate response of the system should be equal to the reference or input signal,
Thus, the error in steady state is a measure of the system’s steady-state

performance.

This error will depend upon the nature of the open-loop transfer function G(s)

and the type of input signal that the control syvstem has to follow and alse upon
the effect of disturbanece signals. To aveid investigating the numerous variations
that can exlst, it is possible to classify the steady-state behaviour depending

upon the system type number, which leads to a definition of error constants.

Consider now the unity-feedback system of figure 7, where G(s) is the open-loop
transfer function and K is the gain of the contreller. It is assumed that other
forms of control system are put into the form of figure 7.

rig) els) uls}

K - Glst = x(s)

Fig 7

34



7.1 Classification of Systems

The forward transference KG(5) of the control system in figure 7 will in general
be expressed as

Ke(s+a)(s+as)...{s?+bs+c)...

Ké&(s = £.D
(s) st(s+d, )(s+d3)...(s%+es+ F)... (7-3)
K) Agst
- —= , nzm+ | (7.6)
5125‘&5"
k=0

where the |order of the system| is defined as the highest power of s In the
denominator - that is, n: the|rank of the Eystemiis defined as the difference

between the highest power of s in the denominateor and that in the numerator -
that 1, n-m=z1; and the|class (or type number)| of the system is defined as

the power of the faetor 5 In the denominater - that is, .

35



Example A7.1

State the order, rank and type number of the systems with open-loop transfer

function
. i 5+2
L by = s*+35%+35%+5
) 6(s) = :
s (s+2)(s+1)
2
W G(s) = srsvl
{S+2){SE+S+4}

1} In this case the order i@thﬁ'- rank is 4 - 1 -@an::l the type number is
ince the denominator can be written as s{s*+3s%+2s5+1).

(ii) Here the order is@the rank is@nd the type number is@sirma s? is

a factor.

(1ii)Finally the order i.s@ the rank is@ and the type numebr is



" -
Another method of describing frequency response of i -
systems and their stability. The method uses Nyquist diagrams; in these diagrams the gain and the phase of the
open-loop transfer function are plotted as polar graphs for various values of frequency. The transfer function of a

basic closed-loop control system

G(s)
1+ G(s)H(s)

where G(s) is the transfer function of the forward path and H(s) that of the feedback path. It is the term G(s)H(s)
which is termed the open-loop transfer function, it effectively being the transfer function of a closed-loop system if
the feedback path from the feedback element is broken. This open-loop transfer function is of significance in
determining whether a system will be stable ]

With Cartesian graphs the points are plotted according to their x and y coordinates from the origin; with polar
graph the points are plotted from the origin according to their radial distance from it and their angle to the refer-
ence axis

Transfer function of closed-loop system =

THE POLAR PLOT

The polar plot of the frequency response of a system is the line traced out as the frequency is changed from 0 to
infinity by the tips of the phasors whose lengths represent the magnitude, i.e. amplitude gain, of the system and
which are drawn at angles corresponding to their phase ¢

¢ = 90°
Y bo-e-- ° Ry I/ 5%
r . @
: .--'1III 9 \‘&\ ijl |
I - T
! al ‘\1 ¢ =180° / $=0
(A) (B)

¢ = 270°
(A) Cartesian graph with points spedfied by x and y values, (B) polar graph with points specified by r and ¢ values.
Polar plot with the plot as the line traced out by the tips of the phasors as the frequency is changed from zero to infinity.



Determine the Nyquist diagram for a first-order system with an open-loop transfer function of 1/(1 + 7s).

The frequency response is:

1 1 1 % 1—jwr 1 . wr .

1+jwr| 1+jwr 1—jwr 14w T+ J

The magnitude is thus: WT

Magnitud L
agnitude = ——
> A1+ w272 /
and the phase is: 1
Phase = — tan"lwr

At zero frequency the magnitude is 1 and the phase 0°. At infinite frequency the magnitude is zero and the phase is
—90°. When wrt =1 the magnitude is 1/\/2 and the phase is —45°. Substitution of other values leads to the result shown

in Figure of a semicircular plot.
¢ = 90°
¢ = 180° wr=0
ot = infinity ¢=0°
wr =1 .
b = 270° Increasing
frequency

Nyquist diagram for a first-order system.
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?ﬁmww R@W E Xarmple |

Determine the magnitade and phase of the qutput from a systemn when subject to o sinusoidal input of 2 sin 3137 it has

a ransfer function af G() =2/ (= + 1),
The frequency response function is obtained by repladng s by jun

2
jwt1

Multiplying top and bottom of the equation by (—jw +1) gives:

Ohtpul Sme Wave

2 =il —w2
COI= T TR¥l . TeEe ‘
- L] ] . !j"l'-lt-f—'l:
The magnitude a + # is /(™ -+ ) and is thus for Glju): /\/\/ -
1G] = g # o 2o 2 g Soa e
MUV ERE ™ @R+ a1 \_
and the phase angle is given by: ﬁ________‘:“'”:' e n
L] F Y
Aul Tt 4 Lo sl
Bng = & ANTANGYATS
;. ! ' % ! .
Faor the specified input we have w=3rad /s The mognitude is thus: JI:" 1 f"—‘/‘; 1:1‘ ;ll
i h S "
2 2 Phaca .
ik

j)| = === = =063
a Vid+1) /3 41 -
Linehr reflutis felpnrale |0 3 Sme wave ngail

md the phasg is given by ban & = —3 a5 ¢ = +72°, This is the phase angle between the input and the crutpuit. Thus, the output
5 the sinusoidal signal of the same frequency as the input dgnal and described by 2 X 0,63 sin (3¢ — 72°) = 1.26 sin (3t — 729).
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el

For INput x{y=cosr, we have: + FINd the Trequency response of a system with Transier function:

'__‘____.-——E-——- 1(s)= s+0.1
[f2)= %W.-_n 1 BjY)= tan"[;[] ~tan [5) £5.3' H{s)=——C
r 425 + Then find the amplitude and phase response yfi) for inputs:
g J(£)=0372cos(2t +63.7) () x=cosZiand {ii) x{D=cos(l0t-309

= o = 073 conlls + 637 + Then find the ampfitude and phase response ¥/ for inputs:
() xf=cosrand (i) x{=cos(i0;-507

+ Substitute s=fw Hﬁm}-jm+ﬂt
ard 5
o1 jo = Y22 ar + 001 W jm}=.:ﬂum;=tan-*[£]—m”[E]

o

+ For input xfO=cos(!0r-309, we will usa the amplitude and phasa respanse

CUrVEs directly;

7 Hio)=osss

(10 = ZH( 10 =28
v Therefare ) vi)

M) =080 coa{lly = 507 4+ 26 = 0,89 cos{l Ov + 24°)

\

)
A
w - —
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Obtain a polar plot for a system with transfer function
1

G(s) =
> (1+2s)(s> +s+1)
Letting s = jw
1
G{jw) = . - —
Cartesian (1 +i20)1 — o + jo)
coordinates . 1
=30 + jBo — 20°)
) — jw(3 — 2w?)
G(] ) 1 + 3a) — 30* + 40°

Now insert a range of numerical values of frequency w rad/second
eg forw=1 G(jw)=—04—-j02

w=05 G(jw)= +0.154 —j0.77

etc. Polar
Tabular evaluation of harmonic response coordinates
Frequency (rad/second) 01 0.2 04 |07 1 2
i n } |
I 1 ; ’ i :
= 11 0.928] 0.781 | 05811 0.447 . 0.243
T+2wl  J(1 +4w?) ; - ! ' i
1 = L 1 1.020 10755 1155% 1000-’T 0277
T-witiw| J{1-w?)?+w? I DS T T
|G (i) | 110947] 08401 0671 0447 0.067
1 3 ! f |
A , =tan~’ 2w (degrees lag) 0(21.8 [38.7 | bdb ! 63.4 76.0
1+]2w B i ]
| ,_w s Lo |
L{————]=1an" 0118 255 | 539 | 90.0 [1463
1T - w?+jw 1-w? o g
(degrees tag) |
153.4 222.3

£ G(jiw) (degrees lag) 0[33.6 |642 [1084

P | EA—

G
e = T = 7 jo)

Polar plot far system with transfer function G(s) =

1

(1 + 2s)(s? ts+1)



G =00

Sketches of Polar plots of different

system type number,
order of the system

rank of the system

b)

d} | Typical Myquist diagrams for:

L
System type 0 (@) Gs) = 7= ®) G6) = [ 35 T a
1 : SO Y o s
() 66) = s+ s Ta O T T bs +as®
1 N
Systemtype I (6) G(s) = 571 V)W) = {0+ s F as?)’
I

System type 2

() G6) = 35T
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Im ] @ {ncreasing I
-z | TR0 ¢ et |
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Imag. part of
open-loop freq.
response

Real part of
open-loop freq. response

U 1/a
Frequency

<«

Increasing
from 0 to
infinity

G(s)H(s) = K/(s + n), stable for all values of K > 0.

Imag. part of
open-oop freq.
response

Real part of
open-loop freq. response

‘,/

1/ab

Frequency
Increasing
from O to
infinity

G(s)H(s) = K/(s+ a)(s + b), stable for all of K > 0.

Imag. part of
open-loop freq.
response

-1

Frequency
Increasing
from O to
infinity

Real part of
open-loop freq. response

G(s)G(s) = K/s(s + a), stable for all values of K > 0.

Frequency /'

Increasing
from 0 to
infinity

Imag. part of
open-loop freq.
response
e
-1 0 Real part of

G()H(S) =K/s(s +a)(s+ b);

unstable with large K but can become stable 1
point at which the plot crosses the axis being —K/(a +b) and so sta-

bility is when —K/(@@ +b) > —1.

open-loop freq. response

this is wvalues
K is reduced, the



_ - 1. The system giving the Nyquist diagram shown
A. Stable for all frequencies

Imag. axis

-1 C 0 / Real axis

B. Stable only at low frequencies
C. Unstable at all frequencies
D. Marginally stable

2. The system giving the Nyquist diagram shown
real axis and so is:

A. Stable when K is greater than 10

has a value of K/10 where it cuts the negative

Imag. axis
B. Stable when K is equal to 10
C. Stable when K is less than 10 /_\
D. Stable for all values of K !
\ y Real axis
3. The system giving the Nyquist diagram shown i Imag. axis

A. Stable for all frequencies

B. Stable only at low frequencies
C. Unstable at all frequencies '

1 .
D. Marginally stable 0 / Real axis

—_—

W N e
no»
|
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1. Gain margin

The phase crossover frequency is the frequency at which the phase angle first reaches —180° and thus is the
point where the Nyquist plot crosses the real axis On a Nyquist plot the (=1, j0) point is the
point separating stability from instability. The gain margin is the amount by which the actual gain must be
multiplied before the onset of instability. Thus if the plot cuts the negative real axis at —x 1t has
to be multiplied by 1/x to give the value —1 and so the gain margin, which is expressed in dB, is 20 1g(1/x).

When the open-loop plot goes through the (=1, j0) point the gain margin is 0 dB, the system being on the
margin of instability. When the open-loop plot goes to the left of (=1, j0) point the gain margin is negative in
dB, the system being unstable. When the open-loop plot goes to the right of (=1, j0) point the gain margin is
positive in dB, the system being stable. When the open-loop plot does not intersect the negative real axis the
gain margin is infinite in dB.

Phase margin

The phase margin is defined as the angle in degrees by which the phase angle is smaller than —180" at the
gain crossover, the gain crossover being the frequency at which the open-loop gain first reaches 1. Thus, with
a Nyquist plot, if we draw a circle of radius 1 centred on the origin, then the point at which it intersects the
Nyquist line gives the gain crossover. The phase margin is the angle through which this gain crossover line
must be rotated about the origin to reach the real axis and pass through the (=1, j0) point

Imag. part of Imag. part
open-loop freq.
Phase P Pireq
response
Crossove
—
1 IdTb 0 Real part of — 0 Real
open-loop hase part
freq. response margin
Phase margin: the angle through which the gain crossover line must Gain
be mtated to neach the meal axis and pass through the (=1, jO) point. crossover




- 6. For the Bode plot shown determine (a) whether the system is stable, (b) the gain margin and (c) the

phase margin.
(a) The system is stable because it has an open-loop gain less than 1 when the phase is —180°.
(b) The gain margin E‘about 12 dB. Imag. part of
(c) The phase margin is about 3(°. Phase open-loop freq.
Crossover response
= — 20 ' \
) ‘ @ \ -1 |&——» 0 Real part of
o Gain crossover e X
g P w = 0 | | open-loop
o 0 8 0.1 \“I\\ 10 w (rad/s) freq. response
8 Gain o
= margin 8 —20 -
§ S~ = Imag. part
& 40
o
© 0.1 1 10 w (rad/s)
o O N
o Phase 0 ' '
x \B crossover
_1 800 i \-..___1 o _gnu | —
f & 1 0 Real
£ T ha part
Phase margin O _qape = T rnargsii
Stability and Bode plots. o700k \ Gain
crossover ]

7. Determine the gain margin and the phase margin for a system that gave the following open-loop experimental fre-
quency response data: at frequency 0.005 Hz a gain of 1.00 and phase —120°, at 0.010 Hz a gain of 0.45 and phase —180".

The gain margin is the factor by which the gain must be multiplied at the phase crossover to have the value 1. The
phase crossover occurs at 0.010 Hz and so the gain margin is 1.00/0.45=2.22. The phase margin is the number of degrees
by which the phase angle is smaller than —180° at the gain crossover. The gain crossover is the frequency at which the
open-loop gain first reaches the value 1 and so is 0.005 Hz. Thus, the phase margin is 180° — 120° = 60°.




4. Sketch the Nyquist diagram for a system having an open-loop transfer function of 1/[s(s + 1)].
5. With a Nyquist diagram for the open-loop frequency response for a system, what is the condition for the

system to be stable?
6. Determine the gain margin and the phase margin for a system which gave the following open-loop frequency

response:

Imag. part of
Freq.rad/s 14 2.0 26 3.2 3.8 Phase open-loop freq.
Magnitude 16 1.0 0.6 0.4 02 20log (1/0.4)= 201log2.5=8db Crossover | Tesponse
Phase deg. —150 | -160| —170 |-180] =-190 N
1 H—)X 0  Real part of
7. Determine the gain margin and the phase margin for a system which gave the following open-loop frequency open-loop
response: freq. response
Freq. rad/s + 5 6 8 10
Gain 32 23 1.7 1.0 0.6
Imag. part
Phase in deg. —140 -150 —157| -170|| —180
20 log (1/0.6)=201log 1.666 =4.4 db
Answer for Q4. o 0 Real
Imag. hase part
1 0 margin
— 9 ]
Real Gain
/ Answers crossover

f 5. (—1, j0) point not to be enclosed
f' 6. 8.0 dB, 20°
.' 7. 4.4 dB, 10°




Plot the Nyquist diagram for a system with the open-loop transfer function K/[(s+ 1)(s+ 2)(s+ 3)] and consider the

value of K needed for stability.
The open-loop frequency response is:

The magnitude and phase are:

Imag. part of
open-loap freq.
K response
jo+ 1jwr + 2)(jw +3
(jw + Dl + 2(jw +3) /’\ .
—-KI60
Real partof
Magnitude = K open-loop freq. response
gn Vet + 1)e? +4)w? +9)
< Frequency
increasing from 0
Pase =t (5) o (5) o )

When w =10 then the magnitude is K/6 and the phase is (°. When w = infinity then the magnitude is 0 and the phase is

27(F. We can use these and other points

to plot the polar graph.

Alternatively we can consider the frequency response in terms of real and imaginary parts. We can write the open-loop

frequency function as:

6K(1 — u?) wK(w? — 1)

(o + D? + ) +9)

N2+ D2 + )2 +9)

When w = () then the imaginary part is zero and the real part is K/6. When w = infinity then the imaginary part is zero
and the real part is 0. The imaginary part will be zero when w=,/11. This is a real part, and hence magnitude, of —K /60
and is the point at which the plot crosses the real axis. Thus for a stable system we must have —K/60 less than —1, i.e. K

must be less than &0.

——

- shows the complete Nyquist plot (not to scale).



- I
Determine the gain margin and the phase margin for a system with the open-loop transfer function K/(s + 1)(s + 2)

(s + 3) with K = 20. This system was discussed earlier in this chapter (see Figure 12.11 for the Nyquist plot).
The open-loop frequency response is:
K
(o + D + 2)G + 3)

and this can be rearranged to give:
6K(1 — w?) Lo wK@-11)
P DA HEET9) @D+ D2 +9)

The imaginary part will be zero when w=,/11 and thus the real part is —K/60 and is the point at which the plot
crosses the real axis. Hence, if we have K =20 then the plot intersects the negative real axis at —=20/60= —1/3. The gain
can thus be increased by a factor of 3 in order to reach the —1 point. The gain margin is thus 20 1g 3=9.5dB.

The magnitude is:

K
x,f'lfu;z + IHw? + 4)w? +9)

Thus, for K =20, the magnitude is 1 when «w = 1.84 rad/s. The phase is given by:

Prase =an 1 (2) () ()

and so, at this frequency, the phase is —135.5". Thus the phase margin is 44.5°.
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Block Diagrams

C(s)

Hy |-

ot

Objectives

> Control Signal

Transfer

Function

* Understand the relationship between control signals and transfer functions

* Simplify the block diagrams

 Establish the relationship between the input and output control signals
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W
General Rules

1. Multiply

> Gy

2. Summation

e

LG —
B

GG
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W
General Rules

3. Pre-Multiply (G) -> Post-Multiply (G)

AH
— H —>
AG _——)
—> c > —
A
A+B G(A+B) A

AH
—> H/G —>

AG

AG _ G(A+B)

BG
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™
General Rules

4. Post-Multiply (G) -> Pre-Multiply (G)

AGH

H

—

»
—>
A LY ac
p AG

>

AG+B

—)G—)@—)
B

>

>

v

GH

A

v

AGH

AG

A+B/G

B/G

1/G

AG+B
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= A
General Rules

R - CH E(G)
/ e

l?@szi;jfﬂkﬂ) G(s) C(s) R

5. Closed-loop

C'__ G
CH R 1+ GH
H(s) =
EG=C
(R-CH)G=C G = direct T.F = Forward T.F
’ H = feedback T.F
RG = C(1+HG) GH = loop T.F = O/L T.F
C/R = C/L T.T

E/R = 1/14+GH {Actuating Signal Ratio)



General Rules

R - CH

5. Closed-loop /

R(s - E(s), G(s) C(s)
ICH
H(s) [«

EG=C
(R-CH)G=C, RG=C(1+HG)

C

G

R 1-

- GH
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5. Closed-loop

General Rules

Rs_l__
C

‘R/—CH E(G)
“
E(s), G(s) C(s)
H
H(s) =«

R(s)| G | C(s)

—_— —

61



Example I

Aim: Establish the relationship between Y(s) and X(s)

X g A Y = AX + BX + CX
X | x [plBX Y Y =(4A+B+0)X
Y
e ~=A+B+C
X
X(s) Y(s

—A+B+C
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=
Example 11 -a

Simplify the system and find C/R
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=
Example 11 -b

Simplify the system and find C/R

: | X G, G, 1| G; G
l e e e e e e e e e e e e — = — | &
‘ Gl

N G, G, —
H;
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N
Example 11 - ¢

Simplify the system and find C/R

4 : 1+G162H1 C G
Y R 1+GH
H, L
NG |

—————————
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Example 111 - a
Simplify the system and find C/R

%G& Héﬂ {6 G} €

H, T H,




Example 111 - b
Simplify the system and find C/R

1

<

Gy

GZ > G3 G4 -

1+ GG, H,

——————————————————————

67



Example 111 - ¢
Simplify the system and find C/R

1

Gy
G2 > G3G4
1+ G3G,H
H1 3494412
1
<
G,G,
G]_ > Gz > 6364
1 + G3G4H,

68




Example 111 - d
Simplify the system and find C/R

G3Gy

A 4

I
: :
: . : 1 + GgG4H2
I Hl I
I I

(%)—» Gl >G2 > 6364
1+ G;G,H
H, | 3Uy 1y




Example 111 - e
Simplify the system and find C/R

1
<—
G1G,
_R_> : @—» G1 > G2 E > 6364 5
: | 1 + G364H2
[ H]_ ) :
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Ci(s)

Closed Loop Transfer Funection 1 eedbac
2.10.1 Unity Feedback
R{s) + E(s)
' = G({2)
B(s) + E(s) C(s) ~
3t G(3} e B{s)
i His) &
E(s) = R(s) - B(s)
G(s) = G(s). E(8) --r-cmmen=- (1) B{s) = C(s) H(s)
E(s} = R(8) - C{g) -~---=- cmana{2) C(s) = G(s) E(s)

C(s) = G(s) [R(s) - G(s)]

L S8 C)
* R(s) 1+ 06

Rearranging : C/L T.F

Gz}

¢/L T.F = L+ G{a) H(z)

G = direct T.F = Forward T.F
H = feedback T.F
GH = loop T.F = O/L T.F
¢/R = G/L T.T
E/R = 1/1+GH {Actuating Signal Ratio)

the system?
Using the cqual-la;m derived above for the system gain:

_ G
System gain =

9. A negative feedback systemn has a forward path gain of 12 and a feedback path gain of 0.1. What is the overall gain of

12

The overall gain is thus 5.45.

1+GH 1+01x12

=545
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Direct Transmission Gain : G{s}

R(g) + E(s) 10 A)I 20 C{s)
S + 10] 8
G(s} = __}.Ei_.% — 200 } ! j |
(5+10) & S(S+10) A
9 HE
200 400
- DO L.E: GH(S} - 5{5*13;72 - S(5+10)
e G{s) 200
- C/LT.F: (S) = {TeATrF T

a€ 4 108 + 400

- | Characteristic Equations is : 82 + 108 + 400 = 0O

Reduced System: 200 !
R(s) 4’]53 + 108 4 400 C{s)

R(s) + E{s)ﬁll_ﬂl, M(s) + .ii.stl. C(s). @(s) = 1500/5(S+600)
5

, > |
: | = ' - O/L T.F: GH(s) = 7500/S(5+600)
20

- C/L T.F = G/R (s) = 1500/(S% + 6005 + 7500)

Characteristic Equation : 5% + &00S5 + 7500 = Q




Probleml.

Simplify The Block Diagram

R+ +

Ko -1 Gy

A:b?—-)ﬁz.

R ¥,6,6G;

T+ G, + KpG 1050,

Problem 2. Gy
+ + +
Gy Gy "Gz | -y C
H,
H, [€
H,
GLG# Gz + Ga_ }-G
Hy
Hl 1 __4:
Gy + G3

H;

G1G4(Gat G3)

1 + GG H(Gz+ G3)

G,G H,
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i - A?.5 Find the output in following block diagram having 3 inputs, R, U; & U,

&
R + + Uy
+
+
H.l Hz '{"—"
+ U,
R only: R + | : Gy
G]_GE }" D GIG’E
¥ 1 1 - GIGEHIHE
Uy only: Uy + )
GE }- C = U G’g
+ 2 "~ : .I. - G‘|GEH1H2
G:I.HIHZ r
U, only: U, + : Cq
HyGy Gy ant G H,G,G,
* 3 2°7T = G,G.H, H,
H; e
R GG+ U Ga* UpH, 6,6,
‘ . 1l - G,G.HH
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A7 .6 Movine a take-off point around a block
‘ Bis)
F*zlrﬁj 3
Cls)
IH%EEE{"""" j:]_ﬁﬁl - jsaliﬁl -
{a)
T B(s)
Fols)
Fyl=)
Afls) i Cls)
FI':S.} F,Jfﬂ'pl =

AHE/smc{Misc.1:AHE(2))

ihl

A2.7

Block Manipulatio
f'f[lr!-i.l
Cisl
Ris! 4 Gyls) Gils) -
Hgfﬁj
(ad
Hls)
Gols)
N Cls)
Ris) +1 AG) o I oo 1 e
H,is)
{3 40s)
{b)
Rig) -+ .
{_F G (5] Gyls) (ryls) C@
l".lr-'f."fl + -FIEEEJ
Gll‘f] Gafﬁj




s
{d]

Gﬂﬂ

Gz[ﬂ

can be rearranged
thus to avoid the
interlinking loops

Which is equivalent to

Uis)
t

 Hy (5] I
.

G, (s

g R

Cis)

Gals)

G;_:{S]G ﬂﬂ'

1+ Gals)G (s H2(s)

I Hy {5}

715

GiishG a(5)G 415

1+ GafsIGalsIHqls)
+ G {s}Gois)H {5

Cis)
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, A 1 8n& ] E;
R(s) + & ' v O PG | T
’% o= Gl h' fr: .‘ Ilr,-H-._IIII-' —
+ T
— G /Gy |

1+ E?."’ri-\]
GG

o R +GaHe K > G v |
N 3
HG.Hy 35 \

Fz ey "]'-\‘JJ'.'H‘*‘E:

. _J Gy (o + anl"'ﬁﬁ.ﬂ-ﬂ
| /L I+ G Ha t+ & Gy




—— Ha
e ——

- Gz N

4 74, ( ""qpﬂnw> ’

ARG

K) GG g 7
| + CfH' 'l’q,,H-u

-—
-

I/K{

GG
|+ G H +E M+ GG g




= r—— ——— e

R &y
i
G, Gy c R 7 Gy «:é- Gy
1
Hy pt—d Hy ot E;
(a) (bl
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. . Y
Transfer function of output to input : p

X G, (G 1) 1Y
$ "
| +G G, Gy * G (G4 1)

11G
2l +
+

V<

v

1+1/G,

X %

1+1/G;y
14+ G4G,5,

GG
—12_ (141G,

1+ 616293




R(s)

R+

| Gi(s)

- Gis) e

Y
Q
2

Y

Gs(s)

Gy(s)

C(s)

[}

IO

H

qu%+atq5

l ~+ th'}-Q%_qlq;

-

i GLQ’J-' B
|+ QG316 6.6,

G, 6, Gs t G, Ge
['{"G‘G;g TQ1C{.:~C?11-

i i
G st Yo

G2

4 Qs Tt

J'

G 2



>l e

s-—"(X)

5 X 16/5 X 3
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Summary

Analysis of block diagrams

¢ Manipulate control signals and transfer functions

+» Establish basic rules
¢ Simplify the block diagram

Concepts are demonstrated via examples
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